Low-level and high-level models of perceptual compensation for reverberation

Amy V. Beeston and Guy J. Brown

- distortions of naturally reverberant environments.
- context is incongruous [1].
- compensation in speech identification tasks.

	near-near					near-far						far-f
	sir	skur	spur	stir		sir	skur	spur	stir		sir	skur
sir	19	0	0	1		18	0	0	2		16	1
skur	0	20	0	0		3	15	0	2		0	16
spur	0	1	18	1		7	2	10	1		2	1
stir	0	0	0	20		8	1	1	10		1	0

metric, and to Kalle Palomäki, Tony Watkins, Hynek Hermansky and Simon Makin for helpful discussion.

{a.beeston, g.brown}@dcs.shef.ac.uk Department of Computer Science, University of Sheffield, UK

		far-far								
) ²	sir	k	р	t	Φ ²					
887	11	3	2	4	0.0731					
250	3	12	1	4	0.1143					
042	1	10	7	2	0.2558					
612	5	5	1	9	0.3060					

High-level model

- Wrong model is selected in mismatched CW/TEST reverberation conditions: confusions increase.

- ASR features: 12 MFCCs + deltas + accelerations.

- likelihoods in the log domain:

 $\log[p(x(t)|\lambda_{n,f})] = \alpha(t) \log[p(x(t)|\lambda_n)] + (1-\alpha(t)) \log[p(x(t)|\lambda_f)]$

- $\alpha(t)$ adjusted dynamically using near/far classifier based on MPR metric.
- $\alpha(t) \rightarrow 0$ if reverberant; $\alpha(t) \rightarrow 1$ if dry.
- Model reproduces main confusions evident in human data ($\Phi^2 < 0.1$).

	near-near						near-far					far-far				
_	sir	k	р	t	Φ ²	sir	k	р	t	Φ ²	sir	k	р	t	Φ ²	
sir	16	0	0	4	0.0514	18	0	1	1	0.0333	14	1	2	3	0.0167	
skur	0	19	0	1	0.0256	3	17	0	0	0.0531	2	16	0	2	0.0667	
spur	1	0	17	2	0.0590	5	1	14	0	0.0583	3	0	16	1	0.0583	
stir	1	1	1	17	0.0811	8	3	0	9	0.0513	0	0	0	20	0.0256	

- corpus speech identification task.
- more complex acoustic-phonetic cues for /p/, /t/, /k/ identification.
- Al corpus test material).
- 1. AJ Watkins (2005). J. Acoust. Soc. Am. 118 (1) 249-262
- 2. EJ Brandewie & P Zahorik (2010). J. Acoust. Soc. Am. 128 (1 291-299
- AV Beeston, GJ Brown, AJ Watkins & SJ Makin (2011). Int. Audiology 50 (10) 771-772
- 4. J Wright (2005). Articulation Index. Linguistic Data Consortion
- 5. JJ Guinan (2006). Ear Hear. 27 (6) 589-607
- 6. RT Ferry & R Meddis (2007). J. Acoust. Soc. Am. 122 (6), 351 7. AV Beeston & GJ Brown (2010). Proc. Interspeech, Makuhar 2462-2465

The University Of Sheffield.

• Compensation for reverberation is viewed as an acoustic model selection process: analysis of speech preceding TEST informs selection of appropriate acoustic model. • Performance is optimal when reverberation of context and test word match.

• Feature vectors for 'near' and 'far' reverberated utterances were concatenated for training to provide matching state segmentation to the likelihood weighting scheme • Feature vectors subsequently split into separate 'near' and 'far' models for decoding. • The combined near-far observation state likelihood is a weighted sum of parallel

Discussion

• The high-level computer model replicates compensation for reverberation in the AI

• Efferent model results are consistent with the proposal that auditory processes controlling dynamic range might contribute to reverberant 'sir/stir' distinction.

• Efferent model helps to recover dips in temporal envelope, but not to recover the

• Lack of training data may have contributed to poor performance of efferent-based model on AI corpus task (for the high-level model, we adapted the recogniser on the

• Future work will add frequency-dependent processing, since recent perceptual data suggests constancy occurs within individual frequency bands [12, 3]. We will also address recent findings of [13] concerning compensation with silent contexts.

	8.	T Jürgens & T Brand (2009). J. Acoust. Soc. Am. 125 (5) 2635-2648
)	9.	Hidden Markov model toolkit (HTK). http://htk.eng.cam.ac.uk
	10.	KF Lee & HW Hon (1989). IEEE Trans. Acoust., Speech, Signal Process. 37 (11) 1641-1648
um	11.	Carnegie Mellon University (CMU) pronunciation dictionary. http://www.speech.cs.cmu.edu/cgi-bin/cmudict
.9-3526	12.	AJ Watkins, SJ Makin & AP Raimond (2010). <i>In</i> Binaural processing and spatial hearing. Danavox Jubilee Foundation 371-380
i,	13.	JB Nielsen & T Dau (2010). J. Acoust. Soc. Am. 128 (5) 3088-3094