Perceptual experiments sir-skur-spur-stir

Amy Beeston & Guy Brown

19 May 2010

*ロ * * @ * * ミ * ミ * 三 * シ * *

1 Introduction

- 2 Experiment 1: cutoff Set up Results
- 3 Experiment 2: reverse Set up Results
- 4 Discussion

Introduction

introduction

・ロト < 団ト < 三ト < 三ト < ロト

-Introduction

Background

- Based closely on Watkins' sir-stir paradigm
- Gather human data for ASR comparison with/without constancy model
- Investigate effect of reverberation on stop consonants esp. place of articulation
- Replicate compensation for reverberation
 - in another lab
 - with naturalistic speech, not interpolated stimuli

• with further unvoiced stop consonants $\{k,p,t\}$

Introduction

Comparison with Watkins' sir-stir work Similarities

Two experiments (works in progress)

- *cutoff*: frequency effects Watkins and Makin, JASA 2007 etc.
- reverse: time-direction effects
 Watkins, JASA 2005, experiment 5

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへ⊙

Introduction

Comparison with Watkins' sir-stir work Differences

Listener data

• consonant confusions (not category boundary shifts)

- percentage correct
- relative information transferred
- something else?

もって 正明 エル・エッ・モッ・トロッ

- Introduction

% correct and relative information transferred (RIT)

$$m =$$
 $m =$

 20
 0
 0
 0
 5
 5
 5
 5

 0
 20
 0
 0
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5

- RIT reflects information about *pattern* of errors
- reflects complexity of task useful for ASR - different sized vocabularies OK

RIT = H(X : Y) / H(X)

H(X : Y) is the mutual information of X and Y H(X) is the self-information (entropy) of X

Ref: Smith (1990)

Experiment 1 "cutoff"

└─ Set up

cutoff experiment 1

・ロト < 団ト < 三ト < 三ト < ロト

Experiment 1 "cutoff"

└─ Set up

cutoff experiment

Aim:

- find appropriate parameter set for future experiments
- should allow
 - effect of reverberation on test word
 - compensation due to reverberation on context

Prediction:

• Extreme low-pass filtering increases misclassification rate also blocks compensation for reverberation

Experiment 1 "cutoff"

Stimuli (cutoff)

1600 stimuli = 20 talkers \times 4 words \times 4 distances \times 5 cutoffs

- 80 Articulation Index Corpus utterances 20 talkers, 4 test words {sir, skur, spur, stir}
- 4 reverberation conditions L-shaped room {near-near, near-far, far-near, far-far}
- 5 low-pass filter cutoff frequencies 8th order Butterworth {1000, 1500, 2000, 3000, 4000} Hz

Each utterance once to each listener

1 group of 20 subjects

Experiment 1 "cutoff"

-Results and analysis

Results (cutoff) i. percentage error

Experiment 1 "cutoff"

Results and analysis

ANOVA (cutoff)

i. percentage correct

- 3-way repeated measures, all within-subject factors
- Independent variables
 - test-word distance (2 levels)
 - context distance (2 levels)
 - low-pass filter cutoff frequency (5 levels)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへ⊙

- Dependent variable
 - percentage correct

Experiment 1 "cutoff"

Results and analysis

ANOVA (cutoff) results

i. percentage correct

- Significant main effects
 - test F(1, 19) = 79.28, p < 0.001
 - cutoff $F(4,76) = 24.48, \epsilon_{HF} = 0.70, p < 0.001$
- Significant interactions
 - test × context F(1, 19) = 8.47, p < 0.01
 - context × cutoff $F(4, 76) = 4.227, \epsilon_{HF} = 0.90, p < 0.01$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへ⊙

• No other significant *F*-ratios

Experiment 1 "cutoff"

-Results and analysis

Results (cutoff) ii. relative information transferred

Experiment 1 "cutoff"

Results and analysis

ANOVA (cutoff)

ii. relative information transferred

- 3-way repeated measures, all within-subject factors
- Independent variables
 - test-word distance (2 levels)
 - context distance (2 levels)
 - low-pass filter cutoff frequency (5 levels)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへ⊙

- Dependent variable
 - relative information transferred

Experiment 1 "cutoff"

Results and analysis

ANOVA (cutoff) results ii. relative information transferred

- Significant main effects
 - test F(1, 19) = 59.27, p < 0.001
 - cutoff $F(4,76) = 9.19, \epsilon_{HF} = 0.96, p < 0.001$
- Significant interactions
 - context × cutoff $F(4, 76) = 2.593, \epsilon_{HF} = 1.0, p < 0.05$
- no other significant *F*-ratios
 - no significant interaction of test \times context by this measure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへ⊙

Experiment 1 "cutoff"

Results and analysis

Conclusion (cutoff)

Interim conclusion:

Compensation replicated best at 3 and 4 kHz cutoff conditions Use 4 kHz cutoff frequency for future experiments

うせん 正明 エル・エット (四)・エット

Experiment 2 "reverse"

└─ Set up

reverse experiment 2

・ロト < 団ト < 三ト < 三ト < ロト

Experiment 2 "reverse"

└─Set up

Stimuli (reverse)

1280 stimuli = 20 talkers \times 4 words \times 4 distances \times 4 contexts

- Articulation Index Corpus 20 talkers, 4 test words {sir, skur, spur, stir}
- Everything low-pass filtered 8th order Butterworth, cutoff at 4 kHz
- 4 reverberation conditions L-shaped room {near-near, near-far, far-near, far-far}
- 4 preceding context conditions {forward, reverse} speech × {forward, reverse} reverb

Each utterance once to each listener

48 subjects = 3 groups of 16

Experiment 2 "reverse"

└─ Set up

Stimuli (reverse)

- Forward reverb cases: context reverb overlaps test word
 - Reverse reverb cases: reverb during test word does not vary with context distance nn=fn, nf=ff

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへ⊙

Experiment 2 "reverse"

-Results and analysis

Results (reverse) i. percentage correct

Experiment 2 "reverse"

-Results and analysis

Results (reverse) ii. relative information transferred

〇クク 単語 イヨト イヨト イロト

Experiment 2 "reverse"

Results and analysis

ANOVA (reverse)

• 4-way repeated measures, all within-subject factors

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Independent variables
 - test-word distance (2 levels)
 - context distance (2 levels)
 - speech direction (2 levels)
 - reverberation direction (2 levels)
- Dependent variable
 - i percentage correct
 - ii. relative information transferred

Experiment 2 "reverse"

Results and analysis

ANOVA (reverse) results

Significant main effects

- i. % correct: test *F*(1,47) = 240.0, *p* < 0.001
- ii. RIT: test F(1, 47) = 189.5, p < 0.001
- ii. RIT: context F(1, 47) = 5.7, p < 0.05

Significant interactions

• i. % correct: test × context F(1, 47) = 4.71, p < 0.05

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへ⊙

• ii. RIT: context × test F(1, 47) = 7.9, p < 0.01

No other significant *F*-ratios

Experiment 2 "reverse"

Results and analysis

ANOVA (reverse) significance per speech & reverb direction

	fwd	fwd	rev	fwd	fwd	rev	rev	rev
	speech	reverb	speech	reverb	speech	reverb	speech	reverb
	%	RIT	%	RIT	%	RIT	%	RIT
С	nearly	yes	no	no	no	no	no	no
Т	yes							
$C \times T$	yes	yes	no	nearly	no	no	no	no

・ロト < 団ト < 三ト < 三ト < ロト

Experiment 2 "reverse"

Results and analysis

Conclusion (reverse)

Interim conclusion:

- Fwd-fwd case shows typical compensation pattern
- Reverse reverberation seems to remove main effect of context-distance
- But...

choice of dependent variable influences results considerably

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへ⊙

Discussion

discussion

・ロト < 団ト < 三ト < 三ト < ロト

Discussion

Confusion

Differentiating error patterns

m =				<i>m</i> =				m =				m =			
20 0 0 0	0 20 0 0	0 0 20 0	0 0 20	5 5 5 5	5 5 5 5	5 5 5 5	5 5 5 5	20 5 5 5 5	0 5 5 5	0 5 5 5	0 5 5 5	20 15 15 15	0 5 0 0	0 0 5 0	0 0 0 5
RIT(n % corr	m) = 1 rect(m) = 10	00	RIT(n % cor	n) = rect(n)	0 = 2	25	RIT(n % cori	n) = 0 rect(n	(0.190)	3.75	RIT(n % cori	n) = 0 rect(n	(0.192)	3.75

Discussion

Confusion

Differentiating error patterns

Discussion

Confusion

Receiver operating characteristic (ROC)

19 May 2010 | Sheffield | EPSRC-18 | Perceptual experiments: sir-skur-spur-stir

Discussion

Confusion

Confusions (cutoff) lp@4000 Hz

@nf	sir	skur	spur	stir		@ff	sir	skur	spur	stir
sir	18	0	0	2		sir	16	1	1	2
skur	3	15	0	2		skur	0	16	0	4
spur	7	2	10	1		spur	2	1	14	3
stir	8	1	1	10		stir	1	0	0	19
@nn	sir	skur	spur	stir						
sir	19	0	0	1	-					
skur	0	20	0	0						
spur	0	1	18	1						
stir	0	0	0	20						

Discussion

Confusion

Confusions (reverse) fwd-fwd

@nf	sir	skur	spur	stir		@ff	sir	skur	spur	stir
sir	53	2	1	4		sir	51	0	0	9
skur	11	47	2	0		skur	2	52	1	5
spur	11	6	41	1		spur	1	7	47	5
stir	13	2	0	45		stir	4	2	0	54
	•									
@nn	sir	skur	spur	stir						
sir	58	1	0	1	-					
skur	1	59	0	0						
spur	0	0	60	0						
stir	0	2	0	58						

- Discussion

└─ False negatives

Word-by-word (cutoff) lp@4000 Hz i. False negatives

- Discussion

False negatives

ANOVA (cutoff) lp@4000 Hz i. False negatives

Independent variables (levels): context (2), test (2), word (4) Dependent variable: # false negative responses

- Significant main effects
 - context F(1, 47) = 9.67, p < 0.05
 - test F(1, 47) = 21.08, p < 0.001
 - word $F(3, 141) = 42.17, \epsilon_{HF} = 0.44, p < 0.001$
- Significant interactions
 - context × test F(1, 47) = 8.32, p < 0.01
 - test × word $F(3, 141) = 2.82, \epsilon_{HF} = 0.81, p < 0.05$

- Discussion

└─ False negatives

Word-by-word (reverse) fwd-fwd i. False negatives

- Discussion

False negatives

ANOVA (reverse) fwd-fwd i. False negatives

Independent variables (levels): context (2), test (2), word (4) Dependent variable: # false negative responses

- Significant main effect
 - test F(1, 47) = 61.74, p < 0.001
- Significant interactions
 - context × test F(1, 47) = 4.14, p < 0.05
 - test × word $F(3, 141) = 2.82, \epsilon_{HF} = 1.0, p < 0.05$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへ⊙

- Discussion

Sir responses

Word-by-word (cutoff) lp@4000 Hz ii. Sir responses

- Discussion

└─ Sir responses

ANOVA (cutoff) lp@4000 Hz ii. Sir responses

Independent variables (levels): context (2), test (2), word (4) Dependent variable: # sir responses

- Significant main effects
 - context *F*(1, 47) = 13.64, *p* < 0.01
 - test F(1, 47) = 10.422, p < 0.01
 - word $F(3, 141) = 479.01, \epsilon_{HF} = 0.87, p < 0.001$
- Significant interactions
 - context × test F(1, 47) = 11.81, p < 0.01
 - test × word $F(3, 141) = 7.28, \epsilon_{HF} = 0.85, p < 0.01$

- Discussion

└─ Sir responses

Word-by-word (reverse) fwd-fwd ii. Sir responses

- Discussion

└─ Sir responses

ANOVA (reverse), fwd-fwd ii. Sir responses

Independent variables (levels): context (2), test (2), word (4) Dependent variable: # sir responses

- Significant main effects
 - context F(1, 47) = 7.96, p < 0.01
 - test F(1, 47) = 7.30, p < 0.05
 - word $F(3, 141) = 704.64, \epsilon_{HF} = 0.99, p < 0.001$
- Significant interactions
 - context × test F(1, 47) = 8.044, p < 0.01
 - test × word $F(3, 141) = 7.09, \epsilon_{HF} = 0.70, p < 0.01$

- Discussion

Sir responses

Recap

Much work to do on analysis of current results

Future experiments to be designed with ASR experiments in mind (esp. to help tune constancy model)

Discussion

Thanks...

・ロト < 団ト < 三ト < 三ト < ロト

Discussion

Appendix

extras

Appendix

5 Appendix

References Stimuli creation Stimuli partitioning details Additional results

<□ > < @ > < E > < E > E = 9000

- Appendix

References

Further reading

A.M. Smith. On the use of the relative information transmitted (RIT) measure for the assessment of performance in the evaluation of automated speech recognition (ASR) devices. In Australian International Conference on Speech Science and Technology, pages 368–373, 1990.

A.J. Watkins. Perceptual compensation for effects of reverberation in speech identification. J. Acoust. Soc. Am., 118(1):249–262, 2005.

A.J. Watkins and S.J. Makin. Steady-spectrum contexts and perceptual compensation for reverberation in speech identication. J. Acoust. Soc. Am., 121(1):257–266, 2007.

A.J. Watkins and S.J. Makin. Perceptual compensation for reverberation in speech identication: Effects of single-band, multiple-band and wideband noise contexts. Acta. Acust. United Ac., 93:403–410, 2007.

J. Wright, Articulation Index. Linguistic Data Consortium, Philadelphia, 2005.

Appendix

Stimuli creation

Articulation Index Corpus

Talker	SII	Talker	SKUI
f101	they recognize sir entirely	f101	everyone attempt skur tenth
m102	anyone detect sir evenly	m102	someone record skur entirely
f103	you utter sir more	f103	everyone distinguish skur sometime
m104	noone see sir today	m104	noone remember skur third
f105	you pronounce sir easily	f105	noone study skur neatly
f106	we notice sir sometime	f106	someone write skur precisely
m107	l echo sir today	m107	someone imagine skur precisely
f108	people watch sir clearly	f108	noone write skur second
f109	we show sir tenth	f109	someone show skur fifth
m110	you ponder sir first	m110	we imagine skur gladly
m111	we notice sir seventh	m111	I report skur nicely
m112	l echo sir happily	m112	I think skur first
f113	noone suggest sir steadily	f113	you study skur daily
m114	everyone notice sir anyway	m114	everyone describe skur monthly
m115	I evoke sir precisely	m115	noone echo skur today
m116	people study sir only	m116	l repeat skur surely
m117	everyone study sir sixth	m117	they distinguish skur wisely
m118	they read sir properly	m118	someone say skur fifth
f119	they see sir easily	f119	we sense skur twice
m120	people note sir typically	m120	people speak skur eighth

Appendix

Stimuli creation

Articulation Index Corpus

Talker	spur	Talker	stir
f101	I use spur fluently		noone check stir eighth
m102	everyone perceive spur properly	m102	people determine stir ninth
f103	we think spur fourth	f103	they imagine stir surely
m104	people ponder spur nicely	m104	we determine stir surely
f105	people saw spur nicely	f105	they review stir gladly
f106	we note spur properly	f106	people saw stir steadily
m107	they watch spur only	m107	I remember stir surely
f108	I distinguish spur usually	f108	I use stir neatly
f109	someone remember spur easily	f109	l use stir wisely
m110	someone repeat spur anyway	m110	we view stir ninth
m111	everyone propose spur happily	m111	people ponder stir second
m112	they think spur entirely	m112	I evoke stir precisely
f113	noone hear spur monthly	f113	I read stir second
m114	we speak spur surely	m114	they said stir wisely
m115	people echo spur ninth	m115	I echo stir precisely
m116	everyone thinks spur fluently	m116	noone report stir well
m117	anyone prompt spur easily	m117	everyone view stir neatly
m118	they speak spur seventh	m118	I imagine stir daily
f119	someone witness spur now	f119	you understand stir sixth
m120	noone watch spur happily	m120	they sense stir gladly

19 May 2010 | Sheffield | EPSRC-18 | Perceptual experiments: sir-skur-spur-stir

Appendix

Stimuli creation

Phonetic transcription

<□ > < @ > < E > < E > E = 9000

Appendix

Stimuli creation

Convolution with Reading BRIRs for L-shaped room

- Appendix

└─ Stimuli partitioning details

Partitioning (cutoff)

• Each AIC utterance presented once only to each listener

- 20 conditions are tested
 4 reverb distances ×5 filter cutoffs
- 1600 stimuli partitioned between 20 listeners
- 1 listener gets 80 utterances 4 utterances at each of 20 conditions
- Even partitioning
 - 1 word tested at each of 20 conditions

- Appendix

Stimuli partitioning details

Presentation (cutoff)

- Listener seated in a sound-attenuating booth
- Monaural presentation (left ear)
- Familiarisation with interface
 4 buttons, labelled {sir, skur, spur, stir}
- Click one button for each trial heard
- 1 group of 20 listeners age 20-50, both native-English and non

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへ⊙

19 May 2010 | Sheffield | EPSRC-18 | Perceptual experiments: sir-skur-spur-stir

- Appendix

Stimuli partitioning details

Partitioning (reverse)

- Each AIC utterance presented once only to each listener
- 16 conditions are tested
 4 reverb distances×4 preceding context directions
- 1280 stimuli partitioned between 16 listeners
- 1 listener gets 80 utterances
 5 utterances at each of 16 conditions
- Uneven partitioning 3 words tested once in 16 conditions, 1 word tested twice

- Appendix

└─ Stimuli partitioning details

Presentation (reverse)

- Listener seated in a sound-attenuating booth
- Monaural presentation (left ear)
- Familiarisation with interface
 4 buttons, labelled {sir, skur, spur, stir}
- Click one button for each trial heard
- 48 subjects = 3 groups of 16 listeners age 20-50, both native-English and non

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへ⊙

- Appendix

-Additional results

Cutoff results iii. Pooled (RIT)

- Appendix

-Additional results

Reverse results iii. Pooled (RIT)

<ロト < 個 ト < 臣 ト < 臣 ト 王 国 の < @</p>