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Separation of Speech from Interfering Sounds
Based on Oscillatory Correlation

DeLiang L. Wang,Associate Member, IEEEBNd Guy J. Brown

_Abstract—A multistage neural model is proposed for an au- Over the past decade, there has been a growing interest
ditory scene analysis task—segregating speech from interfering in the development of computational systems which mimic
sound sources. The core of the model is a two-layer oscillator ASA (see [13] for a review). Most of these studies have been

network that performs stream segregation on the basis of os- tivated by th d f front-end f bust
cillatory correlation. In the oscillatory correlation framework, a motivated Dy the need 1or a front-end processor for robus

stream is represented by a population of synchronized relaxation automatic speech recognition in noisy environments. Early
oscillators, each of which corresponds to an auditory feature, work includes the system of Weintraub [57], which attempted
and different streams are represented by desynchronized oscil- tg separate the voices of two speakers by tracking their funda-
lator populations. Lateral connections between oscillators encode mental frequencies (see also the nonauditory work of Parsons

harmonicity, and proximity in frequency and time. Prior to the . .
oscillator network are a model of the auditory periphery and [40]). More recently, a number of multistage computational

a stage in which mid-level auditory representations are formed. models have been proposed by Cooke [12], Mellinger [35],
The model has been systematically evaluated using a corpusBrown and Cooke [7], and Ellis [16]. Generally, these systems
of voiced speech mixed with interfering sounds, and produces process the acoustic input with a model of peripheral auditory

improvements in terms of signal-to-noise ratio for every mixture. :
The performance of our model is compared with other studies function, and then extract features such as onsets, offsets,

on computational auditory scene analysis. A number of issues harmonicity, gm_plitude mO(_quation and frequency mOdU|at_i0n-
including biological plausibility and real-time implementation are ~ Scene analysis is accomplished by symbolic search algorithms

also discussed. or high-level inference engines that integrate a number of fea-
Index Terms—Auditory scene analysis, harmonicity, oscillatory 'tures. Recent dev_elqpments of Such.systems have focussed on
correlation, speech segregation, stream segregation. increasingly sophisticated computational architectures, based

on the multiagent paradigm [37] or evidence combination
using Bayesian networks [26]. Hence, although reasonable
performances are reported for these systems using real acoustic
N practically all listening situations, the acoustic waveforngignals, the grouping algorithms employed tend to be compli-
reaching our ears is composed of sound energy from mulgated and computationally intensive.
ple environmental sources. Consequently, a fundamental tasicurrently, computational ASA remains an unsolved prob-
of auditory perception is to disentangle this acoustic mixturgym for real-time engineering applications such as automatic
in order to retrieve a mental description of each sound sourgpeech recognition. Given the impressive advance in speech
In an influential account, Bregman [6] describes this aspeglcognition technology in recent years, the lack of progress
of auditory function as arauditory scene analysi$ASA). jn computational ASA now represents a major hurdle to the
Conceptually, ASA may be regarded as a two-stage proceggplication of speech recognition in unconstrained acoustic
The first stage (which we term “segmentation”) decomposggvironments.
the acoustic mixture reaching the ears into a collection of The current state of affairs in computational ASA stands
sensory elements. In the second stage (“grouping”), elemepiSsharp contrast to the fact that humans and higher animals
that are likely to have arisen from the same environmeni@n perceptually segregate sound sources with apparent ease.
event are combined into a perceptual structure term@team |; seems likely, therefore, that computational systems which
(an auditory stream roughly corresponds to an object in visioRke more closely modeled on the neurobiological mechanisms
Streams may be further interpreted by higher-level Procesgshearing may offer performance advantages over current
for recognition and scene understanding. approaches. This observation—together with the motivation
for understanding the neurobiological basis of ASA—has
Manusclript rzceivekd Junﬁll%lg%é revised Janua,fy,t_lly 19_99-t,TthiSt Vtvwompted a number of investigators to propose neural-network
e e a2, vting sontst  Uiodels of ASA. Perhaps the first of these was the neural-
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chronized from oscillators that represent different streantnnections between oscillators encode proximity in frequency
On the basis of this representation, Wang [53], [55] latand time, and link oscillators that are stimulated by harmon-
proposed a neural architecture for auditory organization (sieally related components. Time plays two different roles in
also Brown and Cooke [9] for a different account also based onr model. One is “external” time in which auditory stimuli
oscillations). Wang'’s architecture is based on new insights ireoe embedded,; it is explicitly represented as a separate dimen-
locally excitatory globally inhibitory networks of relaxationsion. Another is “internal” time, which embodies oscillatory
oscillators [49], which take into consideration the topologicalorrelation as a binding mechanism. The model has been
relations between auditory elements. Thgzillatory correla- systematically evaluated using a corpus of voiced speech
tion framework [55] may be regarded as a special form afiixed with interfering sounds. For every mixture, an increase
temporal correlation. Recently, Brown and Wang [10] gave an signal-to-noise ratio (SNR) is obtained after segregation by
account of concurrent vowel separation based on oscillatahe model.
correlation. The remainder of this article is organized as follows. In
The oscillatory correlation theory is supported by neurdhe next section, the overall structure of the model is briefly
biological findings. Galambost al. [20] first reported that reviewed. Detailed explanations of the auditory periphery
auditory evoked potentials in human subjects show 40 Hizodel, mid-level auditory representations, neural oscillator
oscillations. Subsequently, Ribast al. [42] and Llinas and network and resynthesis are then presented. A systematic
Ribary [29] recorded 40 Hz activity in localized brain regionsevaluation of the sound-separation performance of the model
both at the cortical level and at the thalamic level in this given in Section VII. Finally, we discuss the relationship
auditory system, and demonstrated that these oscillations bhe#veen our neural oscillator model and previous approaches
synchronized over widely separated cortical areas. Furthtw-computational ASA, and conclude with a general discussion.
more, Joliotet al. [25] reported evidence directly linking
coherent 40-Hz oscillations with the perceptual grouping of
clicks. These findings are consistent with reports of coherent Il. MODEL OVERVIEW
40-Hz oscillations in the visual system (see [46] for a review) In this section we give an overview of the model and briefly
and the olfactory system (see [18] for a review). Recentlgxplain each stage of processing. Broadly speaking, the model
Maldonado and Gerstein [30] observed that neurons in tbemprises four stages, as shown in Fig. 1. The input to the
auditory cortex exhibit synchronous oscillatory firing patterngnodel consists of a mixture of speech and an interfering sound
Similarly, deCharms and Merzenich [15] reported that neurossurce, sampled at a rate of 16 kHz with 16 bit resolution. In
in separate regions of the primary auditory cortex synchronigge first stage of the model, peripheral auditory processing
the timing of their action potentials when stimulated by a pute simulated by passing the input signal through a bank of
tone. Also, Barth and MacDonald [2] have reported evidengechlear filters. The gains of the filters are chosen to reflect
suggesting that oscillations originating in the auditory cortetke transfer function of the outer and middle ears. In turn,
can be modulated by the thalamus, and that these synchrongigs output of each filter channel is processed by a model
oscillations are underlain by intracortical interactions. of hair cell transduction, giving a probabilistic representation
Currently, however, the performance of neural-networsf auditory nerve firing activity which provides the input to
models of ASA is quite limited. Generally, these modelsubsequent stages of the model.
have attempted to reproduce simple examples of auditoryThe second stage of the model produces so-called “mid-
stream segregation using stimuli such as alternating putevel” auditory representations (see also Ellis and Rosenthal
tone sequences [9], [55]. Even in [10], which models th|@a7]). The first of these, thecorrelogram is formed by
segregation of concurrent vowel sounds, the neural netwarmputing a running autocorrelation of the auditory nerve
operates on a single time frame and is therefore unabledctivity in each filter channel. Correlograms are computed
segregate time-varying sounds. at 10-ms intervals, forming a three-dimensional volume in
Here, we study ASA from a neurocomputational perspewich time, channel center frequency and autocorrelation lag
tive, and propose a neural network model that is able &we represented on orthogonal axes (see the lower left panel
segregate speech from a variety of interfering sounds, in-Fig. 1). Additionally, a “pooled” correlogram is formed at
cluding music, “cocktail party” noise, and other speech. Owach time frame by summing the periodicity information in the
model uses oscillatory correlation as the underlying neurdrrelogram over frequency. The largest peak in the pooled
mechanism for ASA. As such, it addresses auditory orgarffisnction occurs at the period of the dominant fundamental
zation at two levels; at the functional level, it explains horequency (FO) in that time frame; the third stage of the
an acoustic mixture is parsed to retrieve a description of eatiodel uses this information to group acoustic components
source (the ASA problem), and at the neurobiological level, diccording to their FO's. Further features are extracted from the
explains how features that are represented in distributed neuradrelogram by a cross-correlation analysis. This is motivated
structures can be combined to form meaningful wholes (thg the observation that filter channels with center frequencies
binding problen). We note that the binding problem is inherenthat are close to the same harmonic or formant exhibit similar
in Bregman’s notion of a two-stage ASA process, althoughpitterns of periodicity. Accordingly, we compute a running
is only briefly discussed in his account [6]. cross-correlation between adjacent correlogram channels, and
In our model, a stream is formed by synchronizing oscithis provides the basis for segment formation in the third stage
lators in a two-dimensional time-frequency network. Lateraif the model.
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Fig. 1. Schematic diagram of the model. A mixture of speech and noise is processed in four main stages. In the first stage, simulated auditoritynerve activ
is obtained by passing the input through amodel of the auditory periphery (cochlear filtering and hair cells). Mid-level auditory represeptdktiens ar
formed (correlogram and cross-channel correlation map). Subsequently, a two-layer oscillator network performs grouping of acoustic céiimatiyents
synthesis path allows the separation performance to be evaluated by listening tests or computation of signal-to-noise ratio.

The third stage comprises the core of our model, in whidrame; otherwise, the connections are inhibitory. Accordingly,
auditory organization takes place within a two-layer oscillahe second layer groups a collection of segments to form
tor network (see the lower right panel of Fig. 1). The firsh “foreground” stream that corresponds to a synchronized
layer produces a collection of segments that correspond population of oscillators, and puts the remaining segments into
elementary structures of an auditory scene, and the secearithackground” stream that also corresponds to a synchronized
layer groups segments into streams. population. The background population is desynchronized

The first layer is a locally excitatory globally inhibitory os-from the foreground population. Hence, the second layer
cillator network (LEGION) composed of relaxation oscillatorsembodies the result of ASA in our model, in which one sound
This layer is a two-dimensional network with respect to timsource (foreground) and the rest (background) are separated
and frequency, in which the connection weights along treecording to a FO estimate.
frequency axis are derived from the cross-correlation valuesThe last stage of the model is a resynthesis path, which
computed in the second stage. Synchronized blocks of oscilidlows an acoustic waveform to be derived from the time-
tors (segmenisform in this layer, each block corresponding tdrequency regions corresponding to a group of oscillators.
a connected region of acoustic energy in the time-frequenBgsynthesized waveforms can be used to assess the perfor-
plane. Different segments are desynchronized. Conceptuaftygnce of the model in listening tests, or to quantify the SNR
segments are the atomic elements of a represented audigftgr segregation.
scene; they capture the evolution of perceptually-relevant
acoustic components in time and frequency. As such, a seg- IIl. AUDITORY PERIPHERY MODEL

ment cannot be decomposed by further processing stages qf . . . . .
the model, but it may group with other segments in order toq[ is widely recognized that peripheral auditory frequency

Selectivity can be modeled by a bank of bandpass filters with
form a strgam. . : . overlapping passbands (for example, see Moore [36]). In this
The oscillators in the second layer are linked by two kinds g y e .

. ) . . . Study, we use a bank of “gammatone” filters [41] which have

lateral connections. The first kind consist of mutual excitatory . . .

) . o n impulse response of the following form:
connections between oscillators within the same segment. The
formation of these connections is based on the input from gi(t) = t" " exp(—27b;t) cos(2n fit 4+ ¢3)H(t)
the first layer. The second kind consist of lateral connections (1<i<N). (1)
between oscillators of different segments, but within the same -
time frame. In light of the time-frequency layout of theHere, N is the number of filter channels, is the filter order
oscillator network, these connections along the frequenapd H is the unit step function (i.eH(z) = 1 for z > 0,
axis are termedvertical connections(see Fig. 1). Vertical and zero otherwise). Hence, the gammatone is a causal filter
connections may be excitatory or inhibitory; the connectiongith an infinite response time. For tha&h filter channel,
between two oscillators are excitatory if their correspondingj is the center frequency of the filter (in Hzy; is the
frequency channels either both agree or both disagree withase (in radians) anid determines the rate of decay of the
the FO extracted from the pooled correlogram for that timenpulse response, which is related to bandwidth. We use an
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implementation of the fourth-order gammatone filter proposed
by Cooke [12], in which an impulse invariant transform is

used to map the continuous impulse response given in (

to the digital domain. Since the segmentation and grouping 2741
stages of our model do not require the correction of phas%él

delays introduced by the filterbank, we get= 0 1457 ;\gkvAVMvWAmW A

Physiological studies of auditory nerve tunlng curves [39i5 Wm‘
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and psychophysical studies of critical bandwidth [21] indicates S S S AT AT AT AT A o A A
that auditory filters are distributed in frequency according tg 72 - S = ‘
their bandwidths, which increase quasilogarithmically wittg N

increasing center frequency. Here, we set the bandwidth &f . . |

each filter according to its equivalent rectangular bandwidtd \g/%&
W

(ERB), a psychophysical measurement of critical bandwidth

I\I\A/\A/\/\Mf\

in human subjects (see Glasberg and Moore [21]) i =
WW 06 10
ERB(f) = 24.7(4.37£/1000 + 1). )
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b; = 1.019ERB f;) 3)

Fig. 2. A correlogram of a mixture of speech and trill telephone, taken
. . at time frame 45 (i.e., 450 ms after the start of the stimulus). The large
and use a bank of 128 gammatone filters (i&.,= 128) panel in the center of the figure shows the correlogram; for clarity, only the

with center frequenc|es equally distributed on the ERB scadatocorrelation function of every second channel is shown, resulting in 64
between 80 Hz and 5 kHz. Addltlonally the galns of the fllter@ter channels. The pooled correlogram is shown in the bottom panel, and the
Cross-correlation function is shown on the right.

are adjusted according to the 1SO standard for equal loudness
contours [24] in order to simulate the pressure gains of tifleigh-frequency) harmonic regions. The correlogram is able
outer and middle ears. to account for many classical pitch phenomena [33], [47];

Our use of the gammatone filter is consistent with a neadditionally, it may be regarded as a functional description
robiological modeling perspective. Equation (1) provides @ auditory mechanisms for amplitude-modulation detection,
close approximation to experimentally derived auditory nerwehich have been shown to exist in the auditory mid-brain [19].
fiber impulse responses, as measured by de Boer andQteer workers have employed the correlogram as a mechanism
Jongh [14] using a reverse-correlation technique. Additionallfor segregating concurrent periodic sounds with some success
the fourth-order gammatone filter provides a good matgfor example, see Assmann and Summerfield [1]; Meddis and
to psychophysically derived “rounded-exponential” modeldewitt [34]; Brown and Cooke [7]; Brown and Wang [10]).
of human auditory filter shape [41]. Hence, the gammatoneA correlogram is formed by computing a running auto-
filter is in good agreement with both neurophysiological ancbrrelation of the simulated auditory nerve activity in each
psychophysical estimates of auditory frequency selectivity. frequency channel. At a given time stg¢pthe autocorrelation

In the final stage of the peripheral model, the output(i,j,r) for channeli with a time lagr is given by
of each gammatone filter is processed by the Meddis [32] K1
model pf inner hai_r_ cgll function. The outp_u_t of th_e _hai_r cell Ali,j,7) = Z (i, 5 — k@i, j—k—wk). (4
model is a probabilistic representation of firing activity in the
auditory nerve, which incorporates well-known phenomel%

such as saturation, two-component short-term adaptation %{ae ;'SIktze:cuctE:Jranf t?ne ?ﬁg Z?J:j:?;ddn(éﬁle)thgn%ogagI'ty
frequency-limited phase locking. P 9 y

rectangular window of widthiK time steps. We us& = 320,
corresponding to a window width of 20 ms. The autocorrela-
tion lag 7 is computed inL steps of the sampling periafi¢,
There is good evidence that mechanisms similar to thosetween0 and . — 1. Here we usel. = 201, corresponding
underlying pitch perception can contribute to the perceptual a maximum delay of 12.5 ms; this is appropriate for the
segregation of sounds which have different FO's. For examptayrrent study, since the FO of voiced speech in our test set
Scheffers [43] has shown that the ability of listeners to identifyoes not fall below 80 Hz. Equation (4) is computed fdr
two concurrent vowels is improved when they have differetime frames, each taken at intervals of 10 ms (i.e., at intervals
FO’s, relative to the case in which they have the same Fdf. 160 steps of the time indeX. Hence, the correlogram is a
Similar findings have been obtained by Brokx and Nooteboothree-dimensional volume of sizZ€ x M x L in which each
[5] using continuous speech. elementA(z, j, 7) represents the auditory nerve firing rate for
Accordingly, the second stage of our model identifies pef@ frequency channélat time stepj and autocorrelation lag
odicities in the simulated auditory nerve firing patterns. This {see the lower left panel of Fig. 1).
achieved by computing eorrelogram which is one member  For periodic sounds, a characteristic “spine” appears in the
of a class of pitch models in which periodicity informatiorcorrelogram which is centred on the lag corresponding to the
is combined from resolved (low-frequency) and unresolvedtimulus period (see Fig. 2). This pitch-related structure can

k=0

IV. MID-LEVEL AUDITORY REPRESENTATIONS
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be emphasized by summing the channels of the correlograrformation across frequency regions (as in the computation
across frequency, yielding a “pooled” correlogram. Formallgf our pooled correlogram function). Similarly, Carney [11]
we define the pooled correlograsgj, v) at time framej and has identified neurons which receive convergent inputs from

lag 7 as follows: auditory nerve fibers with different characteristic frequencies.
N These neurons appear to behave as cross-correlators, and hence
s(j,7) = ZA('LJ’ 7). (5) they might be functionally equivalent to the cross-channel
P correlation mechanism described here.

Several studies [47], [33] have demonstrated that there is a
close correspondence between the position of the peak in
the pooled correlogram and perceived pitch. Additionally, the
height of the peak in the pooled correlogram may be inter- In our model, the two conceptual stages of ASA (segmen-
preted as a measure of pitch strength. A pooled correlograation and grouping) take place within an oscillatory correla-
is shown in the lower panel of Fig. 2 for one time frame ofion framework. This approach has a number of advantages.
a mixture of speech and trill telephone. In this frame, the RDscillatory correlation is consistent with neurophysiological
of the speech is close to 139 Hz, giving rise to a peak in tfi@dings, giving our model a neurobiological foundation. In
pooled correlogram at 7.2 ms. Note that periodicities due terms of functional considerations, a neural-network model
the telephone ring (which dominate the high-frequency regidias the characteristics of parallel and distributed processing.
of the correlogram and a band at 1.4 kHz) also appear Ao, the results of ASA arise from emergent behavior of
regularly spaced peaks in the pooled function. the oscillator network, in which each oscillator and each
It is also apparent from Fig. 2 that correlogram channet®nnection is easily interpreted. The use of neural oscillators
which lie close to the same harmonic or formant share gives rise to a dynamical systems approach, where ASA
very similar pattern of periodicity (see also Shamma [45]proceeds as an autonomous and dynamical process. As a result,
This redundancy can be exploited in order to group channét® model can be implemented as a real-time system, a point
of the correlogram that are excited by the same acoustif discussion in Section IX.
component (see also Brown and Cooke [7]). Here, we quantifyThe basic unit of our network is a single oscillator, which
the similarity of adjacent channels in the correlogram hig defined as a reciprocally connected excitatory variabje
computing a cross-channel correlation metric. Specificallgnd inhibitory variabley;;. Since each layer of the network
each channel at time framej is correlated with the adjacenttakes the form of a two-dimensional time-frequency grid (see
channeli + 1 as follows: Fig. 1), we index each oscillator according to its frequency
channel(z) and time frame(j)

V. GROUPING AND SEGREGATION BY
A TWO-LAYER OSCILLATOR NETWORK

~

L—-1
1 ~
a1 o a i< N1
(6) Uiy = €(v(1 + tanh(zi;/B)) — wij)- (7b)

Here,fi(z‘,j,r) is the autocorrelation function of (4) whichHere, I;; represents external stimulation to the oscillatsy,
has been normalized to have zero mean and unity variammnotes the overall coupling from other oscillators in the
(this ensures that’(i, j) is sensitive only to the pattern ofnetwork, andp is the amplitude of a Gaussian noise term. In
periodicity in the correlogram, and not to the mean firing raddition to testing the robustness of the system, the purpose of
in each channel). The right panel of Fig. 2 sho@&, 5) for including noise is to assist desynchronization among different
the speech and telephone example. It is clear that the corrasaeillator blocks.
tion metric provides a good basis for identifying harmonics We choose to be a small positive number. Thus, if coupling
and formants, which are apparent as bands of high crossid noise are ignored adg is a constant, (7) defines a typical
channel correlation. Similarly, adjacent acoustic componentdaxation oscillator with two time scales, similar to the van
are clearly separated by regions of low correlation. der Pol oscillator [50]. The-nullcline, i.e.,;; = 0, is a cubic

Our mid-level auditory representations are well supportddnction and they-nulicline is a sigmoid function. If;; > 0,
by the physiological literature. Neurons that are tuned tbe two nullclines intersect only at a point along the middle
preferred rates of periodicity are found throughout the auditobyanch of the cubic with3 chosen small. In this case, the
system (for example, see [19]). Furthermore, Schreiner aaskillator gives rise to a stable limit cycle for all sufficiently
Langner [44] have presented evidence that frequency asrall values of, and is referred to asnabledsee Fig. 3(A)].
periodicity are systematically mapped in the inferior colliculuslhe limit cycle alternates betweesilent and active phases of
a region of the auditory mid-brain. Inferior colliculus neurongsear steady-state behavior, and these two phases correspond
with the same characteristic frequency are organized intmthe left branch (LB) and the right branch (RB) of the cubic,
layers, and neurons within each layer are tuned to a rangspectively. The oscillator is called active if it is in the active
of periodicities between 10 Hz and 1 kHz. Additionally, sepphase. Compared to motion within each phase, the alternation
arate iso-frequency layers are connected by interneurons [38tween the two phases takes place rapidly, and it is referred to
Hence, it appears that the neural architecture of the inferiasjumping The parametet determines the relative times that
colliculus is analogous to the correlogram described here, ahe limit cycle spends in the two phases—a larggroduces
that physiological mechanisms exist for combining periodicitg relatively shorter active phase.flf; < 0, the two nullclines
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y an acoustic component through time and frequency. Segments
y=0 may be regarded as atomic elements of the auditory scene, in

\x =0 [— the sense that they cannot be decomposed by later stages of
- processing.

The first layer is a two-dimensional time-frequency grid of
oscillators with a global inhibitor (see Fig. 1). Accordingly,
Si; in (7) is defined as

LB

Sij = Z Wij,le(-Tkl — 93;) — WZH(Z — 9;/) (8)
KIEN(4,5)

whereW,; 1, is the connection weight from an oscillatgr ;)

y to an oscillatork, 1) and N (¢, j) is the set of nearest neighbors
y=0 of the grid location(z, j). Here, N(i, j) is chosen to be the
four nearest neighbors, arfig is a threshold, which is chosen
between LB and RB. Thus an oscillator has no influence on
its neighbors unless it is in the active phase. The weight of
the neighboring connections along the time axis is uniformly
set to one. The weight of vertical connections between an
oscillator (¢, j) and its neighbofi + 1, j) is set to one if the

Stable fixed point

/

x cross-correlatiorC(s, j) exceeds a threshol@l.; otherwise it
is set to zero. Here, we sét = 0.985 for all the following
() simulations.

W, in (8) is the weight of inhibition from the global

inhibitor », defined as

Z=0p — % %)

whereos, = 1if z;; > 6. for at least one oscillatd, 7), and
0~ = 0 otherwise. Hencé., is another threshold. ., = 1,
-1 z — L.

Small segments may form which do not correspond to per-
ceptually significant acoustic components. In order to remove
: these noisy fragments from the auditory scene, we follow [56]

Time by introducing a lateral potential;;, for oscillator (¢, j),
() defined as

Fig. 3. Nullclines and trajectories of a single relaxation oscillator. (a)

Behavior of an enabled oscillator. The bold curve shows the limit cycle of

the oscillator, whose direction of motion is indicated by arrowheads. LB ad&i = (1—piy)H Z H(zw — 02) — 6, | —epi; (10)
RB indicate the left branch and the right branch of the cubic. (b) Behavior KICN,(3,5)

of an excitable oscillator. The oscillator approaches the stable fixed point. (c)

Temporal activity of the oscillator. The value of the oscillator is plotted. The where Np(i,j) is called the potential neighborhood ¢f ),
parameter values aré:= 0.8, p = 0.02, ¢ = 0.04, v = 9.0, and3 = 0.1. which is chosen to be the left neighbo[r,j . 1) and the

of (7) intersect at a stable fixed point on LB of the cubic [sgddht neighbor(i, j +1). 6, is a threshold, chosen to be 1.5.
Fig. 3(b)]. In this case no oscillation occurs, and the oscillatdus if both the left and right ne|ghbo.r of, 7) are activep;,
is calledexcitable meaning that it can be induced to oscillatg2PProaches one on a fast time scale; otherwiserelaxes to

We call an oscillatoistimulatedif I;; > 0, and unstimulated 2€70 0N & slow time scale determined hy _
if I; < 0. It should be clear, therefore, that oscillations in (7) The lateral potentialy;;, plays its role through a gating term
are stimulus-dependent. on I;; of (7a). In other words, (7a) is now replaced by

The above definition and description of a relaxation 0s-;,  _o. .3 1o .. 7. o o
cillator follows Terman and Wang [)49]. The oscillator may by = Bwij — iy £ 2=+ L H Py =0)+ Sy o (7aD)
be interpreted as a model of action potential generation Wfith p,; initialized to one, it follows thap;; will drop below
oscillatory burst envelope, whererepresents the membranethe threshold in (7al) unles<s, j) receives excitation from
potential of a neuron angl represents the level of activationits entire potential neighborhood.
of a number of ion channels. Fig. 3(c) shows a typical trace Through lateral interactions in (10), the oscillators that

x activity
(=]

of z activity. maintain high potentials are those that have both their left
) _ ) and right neighbors stimulated. Such oscillators are called
A. First Layer: Segment Formation leaders Besides leaders, we distinguifilowersandloners

In the first layer of the networksegmentsare formed— Followers are those oscillators that can be recruited to jump
groups of synchronised oscillators that trace the evolution by leaders, and loners are those stimulated oscillators which
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belong to noisy fragments. Loners will not be able to jump up 5000 -
beyond a short initial time, because they can neither become
leaders and thus jump by themselves, nor be recruited because:

they are not near leaders. We call the collection of all noisy 5. 27411
regions corresponding to loners thmackground which is
generally discontiguous.

An oscillator at grid locatior(¢, 5) is stimulated if its cor-
responding input;; > 0. Some channels of the correlogram
may have a low energy at particular time frames, indicating
that they are not being excited by an acoustic component.
The oscillators corresponding to such time-frequency locations Té
do not receive an input; this is ensured by setting an energy 5
threshold 8,. It is evident from (4) that the energy in a 5
correlogram channelat timej corresponds toi(z, ,0), i.e., 80 1
the autocorrelation at zero lag. Thus, we define the idput 0.0
as follows:

=

O

~]
.

729 A

Center Frequency

Time (seconds)

. o Fig. 4. The result of segment formation for the speech and telephone

I — 0.2, Iif A('L,j, 0) >0, (11) mixture, generated by the first layer of the network. Each segment is indicated
v -5, otherwise. by a distinct gray-level in a grid of size 128 (frequency channels) by 150 (time
frames). Unstimulated oscillators and the background are indicated by black

Here, we se, = 50, which is close to the spontaneous rat@'¢as- In this case, 94 segments are produced.
of the hair cell model.

Wang and Terman [56] have proven a number of mathgistinct gray-level; the system produces 94 segments plus the
matical results about the LEGION system defined in (7)-(1®ackground, which consists of small components lasting just
These analytical results ensure that loners will stop oscillatigge or two time frames. Not every segment is discernible in
after an initial brief time period; after a number of oscillatiorFig. 4 due to the large number of segments. Also, it should be
cycles a block of oscillators corresponding to a significamioted that although all segments are shown together in Fig. 4,
region will synchronize, while oscillator blocks correspondingach arises during a unique time interval in accordance with
to distinct regions will desynchronize from each other. Ahe principle of oscillatory correlation (see Figs. 6 and 7 for
significant region corresponds to an oscillator block that cam illustration).
produce at least one leader. The choiceMf(¢, 7) in (10)
implies that a segment, or a significant region, extends at Ie%st
for three consecutive time frames. Regarding the speed of ) ) )
computation, the number of cycles required for full segregation The second layer is a two-dimensional network of laterally
is no greater than the number of segments plus one. _connected osqllators without global |nh|b|.t|on, vvhmh .embod-

We use the LEGION algorithm described in [55] and [56[fS the grouping stage of ASA. An oscillator in this layer
for all of our simulations, because integrating a large System|§_fst|mulated if its corresponding osallatq in the.fllr.f,t layer is
differential equations is very time-consuming. The algorithrﬁ'ther a leader or a follqwer. Also, the oscillators |n|t|al!y have
follows the major steps in dynamic evolution of the differentidf€ Same phase, implying that all segments from the first layer
equations, and maintains the essential characteristics of @@ assumed to be in the same stream. More specifically, all
LEGION network, such as two time scales and properties 8fimulated oscillators start at the same randomly placed posi-
synchrony and desynchrony. The derivation of the algorithHPn on LB [see Fig. 3(a)]. This initialization is consistent with -
is straightforward and will not be discussed here. A maj@Sychophysical evidence suggesting that perceptual fusion is
difference between the algorithm and the dynamics is that tH¢ default state of auditory organization [6]. The model of
algorithmic version does not exhibitsegmentation capacity & Single oscillator is the same as in (7), except thatis
which refers to the maximum number of segments that c§Aanged slightly to
be separated by a LEGION network. It is known that a 5
LEGION network, with a fixed set of parameters, has a limitdgls = 3%ij — %35 + 2 = yij + Li;[1 + pH(pi; — 0)] + Sij + p-
capacity [56]. Given that many segments may be formed (7a2)
at this oscillator layer, we choose the algorithmic version
for convenience in addition to saving computing time. ThEere . is a small positive parameter. The above equation
following parameters are either incorporated into algorithmimplies that a leader with a high lateral potential gets a slightly
steps or eliminated?, p, ¢, v, 3, 8, andé.. higher external input. We choos¥, (i, j) and 6, [see (10)]

As an example, Fig. 4 shows the results of segmentation 8y that leaders are only those oscillators that correspond to
the first layer of the network for a mixture of speech and trippart of the longest segment from the first layer. How to select
telephone (one frame of this mixture was shown in Fig. 2& particular segment, such as the largest one, in an oscillator
The size of the network is 128 150, representing 128V) network was recently addressed in [54]. With this selection
frequency channels and 1%0/) time frames. The parametermechanism it is straightforward to extract the longest segment
W. is set to 0.5. Each segment in Fig. 4 is represented byfram the first layer. Because oscillators have the same initial

Second Layer: Grouping
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phase on LB, leaders with a higher external input have a higher 5 -
cubic (see Fig. 3), and thus will jump to RB first.

The coupling termsS;; in (7a2) consists of two types of
lateral coupling, but does not include a global inhibition term

Sij = Sfj + S;'J (12)

2741

1457
Here S;; represents mutual excitation between the oscillators

within each segment. Specificallyg;; = W.; if the active
oscillators from the same segment occupy more than half of
the length of the segment; otherWiS% = W,, if there is at
least one active oscillator from the same segment.

The coupling ternt}; denotes vertical connections between
oscillators corresponding to different frequency channels andﬁ
different segments, but within the same time frame. At each 80
time frame, a FO estimate from the pooled correlogram (5) is
used to classify frequency channels into two categories: a set
of channels,P, that are consistent with the FO, and a set of
channels that are not. More specifically, given a delayat 5000 -
which the largest peak occurs in the pooled correlogram, for
each channel at time frameyj, ¢ € P if

A(i, 7> Tm)/A(iv 7> 0) > b4. (13)

Note that (13) amounts to classification on the basis of an
energy threshold, sincd(<, 7, 0) corresponds to the energy in
channelk at timej. Our observations suggest that this method
is more reliable than conventional peak detection, since low-
frequency channels of the correlogram tend to exhibit very
broad peaks (see Fig. 2). The delay, can be found by
using a winner-take-all network, although for simplicity we
apply a maximum selector in the current implementation. The 5
thresholdé, is chosen to be 0.95. Note that (13) is applied 80 -
only to a channel whose corresponding oscillator belongs to 0.0
a segment from the first layer, and not to a channel whose
corresponding oscillator is either a loner or unstimulated. As an ()
example, Fig. 5(a) displays the result of channel classificatibig- 5- (a) Channel categorization of all segments in the first layer of the
forthe speech and telephone mixture. In the figure, gray pixe}2"%, 7 e speech and ekptone e, Grey pixels repfesent e
correspond to the seP, white pixels correspond to the sefp) Result of channel categorization after conformation and trimming by the
of channels that do not agree with the FO, and black pixdpsgest segment.
represent loners or unstimulated oscillators.

The classification process described above operates on cltangular limit method [28], for integrating relaxation oscillator
nels, rather than segments. As a result, channels within thetworks.
same segment at a particular time frame may be allocated t&t present, our model does not address sequential grouping;
different pitch categories [see, for example, the bottom seig-other words, there is no mechanism to group segments that
ment in Fig. 5(a)]. Once segments are formed, our model da#s not overlap in time. Lacking this mechanism, we limit
not allow them to be decomposed; hence, we enforce a rolgeration of the second layer to the time window of the
that all channels of the same frame within each segment mlmsigest segment. In our particular test domain, as indicated
belong to the same pitch category as that of the majority of Fig. 4, the longest segment extends through much of
channels. After this conformational step, vertical connectiotise entire window due to our choice of speech examples
are formed such that, at each time frame, two oscillators thfat are continuously voiced sentences. Clearly, sequential
different segments have mutual excitatory links if the twgrouping mechanisms would be required in order to group
corresponding channels belong to the same pitch categaysequence of voiced and unvoiced speech sounds. Fig. 5(b)
otherwise they have mutual inhibitory links. Furthermoreshows the results of channel classification for the speech and
Sy = Wi if (i,5) receives an input from its inhibitory telephone mixture after conformation and trimming by the
links—this occurs when some active oscillators have inhibitotgngest segment.
connections with{é, j). Otherwise,S}; = W, if (¢, j) receives ~ We now consider the response of the second layer to the
any excitation from its vertical excitatory links. After thespeech and telephone mixture. The second layer has the same
lateral connections are formed, the oscillator network is naize as the first layer, and in this case it is a network of
merically solved using a recently proposed method, called th28 x 150 oscillators. The following parameter values are

729
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. . ®) . Fig. 7. (a) Temporal traces of every enabled oscillator in the second layer
Fig. 6. The result of separation for the speech and telephone mixture. {§) the speech and telephone mixture. The two traces show the combined
A snapshot showing the activity of the second layer shortly after the stagtivities of two oscillator blocks corresponding to two streams. (b) Temporal
of simulation. Active oscillators are indicated by white pixels. (b) Anothefraces of every other oscillator at timeframe 45 (cf. Fig. 2). The normalized
snapshot, taken shortly after (a). x activities of the oscillators are displayed. The simulation was conducted

fromt = 0 tot = 24.
used: i = 0.01; 8§ = 095 W, = 4.0, W, = 0.1;
W, = 0.5; and W; = —0.5. With the initialization and lateral ticular example, a further analysis using the same strategy
connections described earlier, the network quickly (in the firstould successfully group segments that correspond to the
cycle) forms two synchronous blocks, which desynchronizelephone source because the telephone contains a long seg-
from each other. Each block represents a stream extractednignt throughout its duration [see Fig. 5(b)]. However, unlike
our model. Fig. 6 shows two snapshots of the second layBrown and Cooke [7] we choose not to do further grouping
Each snapshot corresponds to the activity of the network sabce intruding signals often do not possess such coherence
a particular time, where a white pixel indicates an actividor example, consider the noise burst intrusion described in
oscillator and a black pixel indicates either a silent or excitab&ection VII). Since our model lacks an effective sequential
oscillator. Fig. 6(a) is a snapshot taken when the oscillatgrouping mechanism, further analysis would produce many
block (stream) corresponding primarily to segregated speestheams of no perceptual significance. Our strategy of handling
is in the active phase. Fig. 6(b) shows a subsequent snapghetsecond stream is in line with the psychological process of
when the oscillator block (stream) corresponding primarily tiigure-ground separation, where a stream is perceived as the
the telephone is in the active phase. This successive “pop-ofafeground (figure) and the remaining stimuli are perceived as
of streams continues in a periodic fashion. the background [36].

Recall that, while the speech stream is grouped togetherTo illustrate the entire segregation process, Fig. 7 shows the
due to its intrinsic coherence (i.e., all acoustic componertmporal evolution of the stimulated oscillators. In Fig. 7(a),
belonging to the speech are modulated by the same Hb activities of all the oscillators corresponding to one stream
the telephone stream is formed because no further analysie combined into one trace. Since unstimulated oscillators
is performed and all oscillators start in unison. In this paremain excitable throughout the simulation process, they are
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excluded from the display. The synchrony within each streatorresponding to a stream. Resynthesis provides a convenient
and desynchrony between the two streams are clearly showrechanism for assessing the performance of a sound sepa-
Notice that the narrow active phases in the lower trace pition system, and has previously been used in a number of
Fig. 7(a) are induced by vertical excitation, which is not strongpmputational ASA studies (for example, see [57]; [12]; [7];
enough to recruit an entire segment to jump up. This narrqws]). We emphasize that, although we treat resynthesis as a
(also relatively lower) activity is irrelevant when interpretingeparate processing stage, it is not part of our ASA model and
segregation results, and can be easily filtered out. Notice aj§q;sed for the sole purpose of performance evaluation.

that perfect alignment between different oscillators of the SameHere, we use a resynthesis scheme that is similar in principle
stream is due to the use of the singular limit method. Tg that described by Weintraub [57]. Recall that the second

illustrate the oscillator activities in greater detail, Fig. 7(bpayer of our oscillator network embodies the result of auditory

diép'ﬁys tEe Iaactit:/ity of everé/ ot_hr?rr?scillatolr at timg fr"f‘mﬁérouping; blocks of oscillators representing auditory streams
45; this shou e compared with the correlogram in Fig.. op-out” in a periodic fashion. For each block, resynthesis

and the snapsh.ot rgsults in Fig. 6. . . roceeds by reconstructing a waveform from only those time-
As illustrated in Figs. 6 and 7, stream formation arises fro . . . . g .
: . requency regions in which the corresponding oscillators are in
the emergent behavior of our two-layer oscillator networ

: . . . . their active phase. Hence, the plots of second-layer oscillator
which has so far been explained in terms of local interactions... .=~ "~ . B i
tivity in Fig. 6 may be regarded as time-frequency “masks,

What does the oscillator network compute at the syste% ; : ) X .
level? The following description attempts to provide a bridf! which white pixels contribute to the resynthesis and black

outline. Recall that all stimulated oscillators in the secorR§*€!S do not (see also Brown and Cooke [7]).

layer start synchronized, and through lateral potentials some>1ven & block of active oscillators, the resynthesized wave-
leaders emerge from the longest segment. The leaders WRAM iS constructed from the output of the gammatone fil-
a small additional input [see (7a2)] are the first to jump uigzrbank as follows. In order to remove any across-channel
within a cycle of oscillations. When the leaders jump to thahase differences, the output of each filter is time-reversed,
active phase, they recruit the rest of the segment to jump @@ssed through the filter a second time, and time-reversed
With the leading segment on RB, vertical connections fro@gain. Subsequently, the phase-corrected filter output from
the leading segment exert both excitation and inhibition @ach channel is divided into 20-ms sections, which overlap
other segments. If a majority of the oscillators (in terms dfy 10 ms and are windowed with a raised cosine. Hence, each
time frames) in a segment receive excitation from the leadisgction of filter output is associated with a time-frequency
segment, not only will the oscillators that receive excitatiolocation in the oscillator network. A binary weighting is then
jump to the active phase, but so will the rest of the segment tlegdplied to each section, which is unity if the corresponding
receives inhibition from the leading segment. This is becausscillator is in its active phase, and zero if the oscillator
of strong mutual excitatiofii¥.; ) within the segment induced js silent or excitable. Finally, the weighted filter outputs
by the majority of the active oscillators. On the other hand, ifgre summed across all channels of the filterbank to yield a
minority of the oscillators receive excitation from the |eadin9esynthesized waveform.

segment, only the oscillators that receive direct excitation tendggr each of the 100 mixtures of speech and noise described
to jump to the active phase. This is because mutual excitatignsection VI, the speech stream has been resynthesized after
within the segment is weaki¥.o) and it cannot excite the geqregation by the system. Generally, the resynthesized speech
rest of the oscillators. If these oscillators jump to RB, they highly intelligible and is reasonably natural. The highest
will stay on RB for only a short period of time because, ity resynthesis is obtained when the intrusion is narrow-

lacking strong mutual excitation within the segment, theBand (1-kHz tone, siren) or intermittent (noise bursts). The

oyerall excitation Is weak. In Fig. 7_(_a), these are th_e .O.SC'"atolrésynthesis is of lower quality when the intrusion is continuous

with a narrow active phase. Additionally, the inhibition that . N . .
- . . .and wideband (random noise, “cocktail party” noise).

a majority of the oscillators receive serves to desynchronize

the segment from the leading one. When the leading segment VIl. EVALUATION

and the others it recruits—which form the first stream—jump ) .
back, the release of inhibition allows those previously inhibited A resynthesis pathway allows sound separation performance

oscillators to jump up, and they in turn will recruit a whold0 be assessed by formal or informal _intelligibility testing
segment if they constitute a majority within a segment. The&@r €xample, see [48] and [12]). Alternatively, the segregated
segments form the second stream, which is the complem@HPut can be assessed by an automatic speech recognizer
of the first stream. These two streams will continue to H&7]. However, these approaches to evaluation suffer some
alternately activated, a characteristic of oscillatory correlatioflisadvantages; intelligibility tests are time-consuming, and
The oscillatory dynamics reflect the principle of “exclusivéhe interpretation of results from an automatic recognizer is
allocation” in ASA, meaning that each segment belongs @®mplicated by the fact that auditory models generally do not
only one stream [6]. provide a suitable input representation for conventional speech
recognition systems [4].
VI. RESYNTHESIS Here, we use resynthesis to quantify segregation perfor-

The last stage is a resynthesis path, which allows an acoustiance using a well-established and easily interpreted metric;

waveform to be reconstructed from the time-frequency regioB&NR. Given a signal waveform and noise waveform, the
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SNR in dBs is given by 70
SNR= 10log;, sQ(j)/ n2(5) |. (14) m 60 B I —
200/ % 5
o 50+t o

The model has been evaluated using a corpus of 100'%
mixtures of speech and noise previously employed by Cooke ; 40 -
[12] and Brown and Cooke [7]. The mixtures are obtained .%

. . ! <)
by adding the waveforms of each of ten intrusions to each & 441 '\ =~ |
of ten voiced utterances (five sentences spoken by two maleQ
speakers). The intrusions consist of synthetic sounds (1 kHz'—'K', 20
tone, noise bursts, random noise, siren), environmental soundsg,
(trill telephone, “cocktail party” noise, rock music) and speech @ 10

(one male utterance and two female utterances). g
Since separate speech and noise waveforms are availableé’ 0- -]
(14) can be computed before segregation by the model. Ad- LB
ditionally, our resynthesis process allows the SNR to be 10
computedafter segregation by the model, so that performance NO NI N2 N3 N4 N5 N6 N7 N8 NO
can be quantified as a change in SNR. This is possible because .
the resynthesis pathway is linear [i.e., it consists of two passes Intrusion type
of gammatone filtering, and the gammatone filter (1) is linear]. (@
Hence, the resynthesis process satisfies the property of
superposition, and we can write 100
R(s +n) = R(s) + R(n). (15) % : R
(8]
Given a blockB of active oscillators which correspond to a S 0 — 1 — 7
stream, (15) implies that the proportion of signal in the stream ™3 701 o]

can be obtained by resynthesizing the signal waveform from 3, I
B, and the proportion of noise in the stream can be obtainedg 60+ ——— H 4 A+ 4 4 4 A
by resynthesizing the noise waveform frdsn Hence, separate ~ ©
signal and noise waveforms can be obtained after segregatiorg- L0 [ T s N e R N
by the model, and the postsegregation SNR can be compute 404 =& H 4 4 41 4 4 4 4
using (14). g ‘
Fig. 8(a) shows the SNR before and after segregation by.= 30T 7 = 7 1 [ 1 0
. . Q
the model. The SNR was similar for each utterance in the $ nl U 0 0 0L .
same noise condition, and hence the results are expressed ﬁ-
a mean SNR (i.e., an average over the ten utterancesineach 104+ H H H +H - =+
noise condition). Relative to the SNR of the original mixture,
an improvement in SNR is obtained after segregation by the
model for each type of noise intrusion. Dramatic improvements
in SNR are obtained when the interfering noise is narrowband Intrusion type
(1 kHz tone and siren); these intrusions tend to be represented (b)
as a single segment because of their compact spectral structure _ _ ,

. Fig. 8. (a) Signal to noise ratio before (black bar) and after (gray bar)
and hence they can be segregated very effectively from g]e%regation by the model, for voiced speech mixed with ten different intrusions
speech source. We emphasize that the same set of param@&teE 1 kHz tone; N1= random noise; N2= noise bursts; N3= “cocktalil
values is used for the entire corpus of 100 mixtures. Our resulgsty” noise; N4= rock music; N5= siren; N6=trill telephone; N7=

. - female speech; N& male speech; N& female speech). (b) Percentage of
are robust to considerable parameter variations. speech energy recovered from each mixture after segregation by the model.

Of course, SNR does not indicate theelligibility of the

resynthesized speech signal. For example, the model could
retrieve a small proportion of the speech energy and totalljterances in each noise condition. Taken together, Fig. 8(a)
reject the noise; this would give a very high SNR, buand 8(b) provide a good indication of the intelligibility of the
the resynthesized speech would be unintelligible. Accordesynthesized speech. Intelligibility is high when the intrusion
ingly, we complement the SNR metric with a measure a$ narrowband (e.g., 1-kHz tone), as indicated by the high SNR
the percentage of speech energy recovered from each acouwstier segregation and the high percentage of speech energy
mixture [Fig. 8(b)]. The recovered speech signal is produceelcovered. Similarly, the intelligibility of the resynthesized
by masking the original speech signal, i.e., before it is mixedpeech is relatively poor when the intrusion is wideband (e.g.,
with the segregated speech stream [see Fig. 6(a) for examndom noise); in such cases, the SNR and percentage of
ple]. Again, results are presented as an average over the sprech energy recovered are both low.

NO NI N2 N3 N4 N5 N6 N7 N8 N9



WANG AND BROWN: SEPARATION OF SPEECH FROM INTERFERING SOUNDS 695

VIIl. COMPARISON WITH OTHER MODELS tone sequences. However, neither offer a general account

A multistage sound separation system has previously beédnASA; although they are able to explain the grouping of
described by Brown and Cooke [7]. Their system consists 8f Séduence of tones, they lack a mechanism for grouping
four stages, the first of which models the auditory peripher imultaneous components (for example, harmonics of the same

In the second stage, a collection of “auditory maps” extral p)‘ Furthermo_re, these _models represent_auditory grouping
information about periodicity, frequency transitions, onset ,rough thespatial separation of neural activity; for example,

and offsets (these correspond to the mid-level auditory reptlg—the model of McCabe and Denham, each stream is repre-

sentations described here). Information from the auditory ma Eér?te.d by a separate neural array (see also Grossberg [2.3] for
imilar approach). In contrast, our model represents auditory

is used to construct a symbolic representation of the audito f

scene in the third stage of their model. More specifically, U N by atemporal coding, in the form of oscillatory

. . . coHeIation.
auditory scene is represented as a collection of elements, eac

of which traces the movement of a spectral peak through time
and frequency. In the final stage of the Brown and Cooke IX. DISCUSSION AND CONCLUSION

model, a search strategy is employed which groups elements =~ .
according to their fundamental frequency, onset time, and® significant feature of the multistage model proposed here
offset time is that every stage has a neurobiological foundation. The

Clearly, the initial stages of our model bear a close r@_eripheral auditory model is based upon the gammatone filter,

semblance to the Brown and Cooke scheme. However th&\{]&ich is derived from physiological measurements of auditory
are substantial differences in our two approaches. Thé ve impu_lse résSponses. S‘m”af'y’ our mid-level _auditory
in which segment formation and grouping of segments a{ presentations are consistent with the neurophysiology of

performed is significantly different at the algorithmic level. Fo he higher audltory system. Ove_rall, the_ quel is based on
. . . u » .. A framework—oscillatory correlation—which is supported by
example, their method relies on comparison of “local” pitc

L : recent neurobiological findings.
contours of individual elements to compute pitch-based group-, . o9 L .
. . . . . As illustrated in Fig. 7, segregation in the oscillatory cor-
ing, whereas ours is based on “global” pitch estimates. Con-_.. I e :

r(ﬂa‘uon representation is performed in time; after segregation,

ceptually, the model described here is more strongly mo'uvateach stream pops out at a distinct time from the network and

by neurop|olog|cal findings. It _embod|es a more P”nmplegiﬁerent streams alternate in time. While auditory segregation
computational framework—oscillatory correlation—in wh|cqn a spatial representation (e.g., one layer for each stream as

se\gljvment?tltt)g ?nd gr_oupllnt\q arise frI?mlgsmgatory dynamlcsg [31] and [23]) requires an explicit assumption of how many
e note that our simulation results (Fig. 8) are compara eams are in an auditory scene, our representation needs

Wit_h those of Brown and Cooke, Wh9 eva_lluated their s_ystelq_?) prior assumption about the number of streams because
using the same set of 100 acoustic mixiures described dQciIIatory correlation is capable of temporal multiplexing in

Section V_“' Both of our system_s show _the same patteff, s of stream segregation. As a result, our representation is
of SNR improvement across noise conditions. Hence, OHlore flexible and parsimonious

neural oscillator model is able to match the performance OfCurrentIy, our model lacks a mechanism for sequential
theirsympol-based system, but is Computationally simpler aBﬁouping (i.e., it is unable to group acoustic events that
better suited to real-time implementation. are separated in time, such as a sequence of voiced and
Our system has similar advantages over other symbol-bagggsiced speech sounds). There are a number of ways in which
approaches, such as the blackboard-based systems of Klasgggiiential grouping could be implemented within the neural
etal.[27], Ellis [16], and Godsmark and Brown [22], and theygcillator framework. For instance, a sequence of acoustic
multiagent architecture of Nakatast al. [37]. All of these eyents could be allocated to the same stream if they had an
systems require complex control strategies to coordinate 8§ in the same average pitch range. This extension to our
grouping of acoustic components. However, our model coulodel could be readily implemented, since FO information
benefit from the wider representational vocabulary used i aqyailable in the pooled correlogram. Additionally, sounds
these models. Currently, our mid-level auditory representatiogsuld be grouped sequentially by virtue of their spatial location
do not provide good descriptions of noise clouds and transigjit timbre (computational techniques for extracting timbral
clicks; Ellis [16], [17] describes representations of such acougformation have been described by Brown and Cooke [8]
tic components, together with a method of resynthesizing froamd Godsmark and Brown [22]).
them. Consequently, his resynthesis pathway is of a higherour multistage model is entirely bottom-up (see Fig. 1), and
quality than that described here. In our model, segments @kses not include any top-down processing. Such bottom-up
formed only from periodic components in the acoustic inpugirocessing corresponds poimitive segregation [6]. It is clear
noisy and impulsive regions are allocated to a “backgroungfiat ASA is also influenced by attention and prior knowledge,
stream (see Section V-A), and hence do not contribute $0-calledschema-basedrganization [6]. Little computational
resynthesis. study has been directed to schema-based grouping and seg-
Our approach also differs substantially from other neuralegation. We expect that overall computational performance
network models of auditory segregation. Beauvois and Meddi§ speech-related segregation tasks, such as the one addressed
[3] and McCabe and Denham [31] have both described neubare, will improve with an effective mechanism for schema-
architectures which model the perception of alternating pureased organization.
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Our model can potentially be implemented as a real-tinend has been systematically evaluated using a corpus of voiced
system. The first two stages—peripheral processing and mapeech mixed with a variety of interfering sounds.
level processing (see Fig. 1)—can be readily turned to real-
time implementation because the processing involves only
local time windows, and the computations for each frequency
channel can be performed in parallel. Given its rate of synp] P. F. Assmann and Q. Summerfield, “Modeling the perception of

chronization and desynchronization, our two-layer oscillator ~concurrent vowels: Vowels with different fundamental frequencigs,”
. . Acoust. Soc. Amvol. 88, pp. 680-697, 1990.
network may be extended to a real-time system. Three iSSUBS p s Barth and K. D. MacDonald, “Thalamic modulation of high-

need to be addressed in real-time implementation. The first frequency oscillating potentials in auditory cortexyature vol. 383,
one is how external stimuli map to the network in real time. PP 78-81, 1996.

. L. . L. i[3] M. W. Beauvois and R. Meddis, “Computer simulation of auditory
One possible realization is to use systematic time delays {0 stream segregation in alternating-tone sequencesitoust. Soc. Am.

maintain a recent history of the auditory input [55], say 150 vol. 99, pp. 2270-2280, 1996.

; ; ; ] S. W. Beet, “Automatic speech recognition using a reduced auditory
time frames as used in the SpeeCh and telephone mIXtur[é' representation and position-tolerant discriminatioB@mputer Speech

Consistent with the shifting synchronization theory that Wang  and Languagevol. 4, pp. 17-33, 1990. _
proposed to explain primitive stream segregation [55], such al J- P. L. Brokx and S. G. Nooteboom, “Intonation and the perceptual

architecture implies that oscillator populations corresponding igggraﬂon of simultaneous voices}” Phonetics vol. 10, pp. 23-36,

to different streams shift on the oscillator network as thge] A. S. BregmanAuditory Scene Analysi€ambridge, MA: MIT Press,
stimuli unfold in time. The second issue is how the past_ 1990.

. . . . 7] G.J. Brown and M. P. Cooke, “Computational auditory scene analysis,”
ASA result influences current processing. Again, consider the" computer Speech and Languagel. 8, pp. 297—336, 1994.

speech and telephone example. During the duration of th&] G.J. Brown and M. P. Cooke, “Perceptual grouping of musical sounds:

entire utterance, there are time intervals within which the two i\g‘;‘zmp“ta“"”a' model,J. New Music Researchol. 23, pp. 107-132,

sound sources are well separated, and those within which thg G. J. Brown and M. P. Cooke, “Temporal synchronization in a neural
two cannot be separated properly (see Fig. 5). In a real-time oscillator model of primitive auditory stream segregation,"dnmpu-

: i : : : tational Auditory Scene AnalysiB. F. Rosenthal and H. Okuno (Eds.),
system, the segregation decision at a particular time instant Mahwah, NJ: Lawrence Erlbaum, pp. 87103, 1998.

should be based not only on the auditory information at thai] G. J. Brown and D. L. Wang, “Modeling the perceptual segregation of
time, but a.ISO the Segregation decisions in the recent past_ double vowels with a network of neural oscillator&yéural Networks

. . “>" Vol. 10, pp. 1547-1558, 1997.
How this is done in a way that enhances overall segregatigi; | '{i carmey, “Sensitivities of cells in the anteroventral cochlear nucleus

performance is at the heart of the issue. The third issue of cat to spatiotemporal discharge patterns across primary afferdnts,”
is how connections in the oscillator network are set up i[gz] Neurophysiol. vol. 64, pp. 437-456, 1990.

. . . . . . M. P. Cooke,Modeling Auditory Processing and OrganizatjoBam-
real time. Setting up local connections in the first layer IS~ pridge, U.K.: Cambridge University Press, 1993.

straightforward. For the second layer, both mutual excitatofy8] M. P. Cooke and G. J. Brown, “Separating simultaneous sound sources:

; . ; ; Issues, challenges and models,” 8peech Recognition and Speech
connections within each segment and vertical connections SynthesisE. Keller (Ed.), London: John Wiley and Sons, 1994,

between different segments must be set up quickly, basgéa] E. de Boer and H. D. de Jongh, “On cochlear encoding: Potentialities
on the input both from the first oscillator layer and from  and limitations of the reverse correlation techniqué,"Acoust. Soc.

. . Am, vol. 63, pp. 115-135, 1978.
the pooled correlogram. This calls for a mechanism of faﬁ%] R. C. deCharms and M. M. Merzenich, “Primary cortical representation

changing synapses [51]. of sounds by the coordination of action-potential timintyature vol.
Our oscillator network computes ASA in a parallel and disg 381, pp. 610-613, 1996.

. . . ]]()5) D. P. W. Ellis, “Prediction-driven computational auditory scene analy-
tributed fashion, where each oscillator behaves autonomou sis,” Ph.D. DissertationMIT Department of Electrical Engineering and

and in parallel with all the other oscillators in the network.  Computer Science, 1996.

With the above issues for real-time implementation resolveld/] P: P- W- Ellis and D. Rosenthal, “"Mid-level representations for compu-
' tational auditory scene analysis: The weft element,Ciomputational

there is a real possibility that the oscillator network, with  ayditory Scene Analysi®. F. Rosenthal and H. Okuno (Eds.), Mahwah,
its continuous-time dynamics, can be implemented on an_NJ: Lawrence Erlbaum, pp. 257-272, 1998.

; ; ; ; : [18] W. J. Freeman, “Nonlinear dynamics in olfactory information process-
analog VLSI chip. This feature is particularly attractive be ing.” in Olfaction J. L. Davis and H. Eichenbaum (Eds.), Cambridge,

cause considerable computation is needed to analyze real ma: MIT Press, pp. 225-249, 1991. ) i
auditory scenes, and analog VLSI technology is known fd¥®] R. D. Frisina, R. L. Smith, and S. C. Chamberlain, “Encoding of

. . . : . amplitude-modulation in the gerbil cochlear nucleus. 1. A hierarchy of
its high speed and compact size, both desired for real-time enhancement,Hearing Researchvol. 44, pp. 99-122, 1990.

implementation. [20] R. Galambos, S. Makeig, and P. J. Talmachoff, “A 40-Hz auditory
To conclude. we have studied ASA from a neurocompu- potential recorded from the human scalp,” fmoc. Natl. Acad. Sgqj.
. T . USA, 1981, vol. 78, pp. 2643—-2647.

tational perspective and have proposed a multistage mogigl g R. Glasberg and B. C. J. Moore, “Derivation of auditory filter shapes

for segregating speech from interfering sounds, where group- from notched-noise dataHearing Researchvol. 47, pp. 103-138,

. - _ : 1990.
Ing and segregation are performed by a two layer 0S(:Illa‘t&rZ] D. J. Godsmark and G. J. Brown, “Context-sensitive selection of com-

network. The lateral connections within the network em- peting auditory organizations: A blackboard model,"Gomputational
body proximity in frequency and time, and harmonicity. The Qljd'tory SceneEAIrLaIVSI@- F. Fi%SQerltggl ?gg:- Okuno (Eds.), Mahwah,
. - ; : Lawrence Erlbaum, pp. —155, .

network forms au@tory segments first, which C.O”eSpond E93] S. Grossberg, “Pitch-based streaming in auditory perceptionCrex
connected acoustic components that are atomic and percep- ative NetworksN. Griffith and P. Todd (Eds.), Cambridge, MA: MIT
tually relevant elements for further analysis. Streams then Press, 1998.

f h K th h icall | (2:{4] ISO, Normal Equal-Loudness Level Contours for Pure Tones Under
emerge from the neth—’r that groups armonically re at Free-Field Listening Conditions (ISO 22@pnternational Standards Or-
segments. The model is founded on auditory neurobiology, ganization.
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