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Abstract

In order to recognise speech in a background of other
sounds, human listeners must solve two perceptual problems.
First, the mixture of sounds reaching the ears must be parsed
to recover a description of each acoustic source, a process
termed ‘auditory scene analysis’. Second, recognition of
speech must be robust even when the acoustic evidence is
missing due to masking by other sounds. This paper
describes an automatic speech recognition system that
addresses both of these issues, by combining a neural
oscillator model of auditory scene analysis with a framework
for ‘missing data’ recognition of speech.

1. Introduction

Recent advances in speech recognition technology have been
impressive, but robust recognition of speech in noisy
acoustic environments still remains a largely unsolved
problem. This state of affairs stands in contrast to the speech
perception performance of human listeners, which is robust
in the presence of interfering sounds. It is likely, therefore,
that the noise robustness of automatic speech recognition can
be improved by an approach which is more firmly based on
principles of human auditory function.

Here, we describe an approach to speech separation and
recognition that is strongly motivated by an auditory account.
Our approach is motivated by two observations about the
mechanisms of auditory function in general, and those of
speech perception in particular. First, the auditory system is
a sound separatorpar excellence; human listeners are able to
parse a mixture of sounds in order to segregate a target source
from the acoustic backgound. Bregman [2] has coined the
term ‘auditory scene analysis’ for this process, and suggests
that it proceeds in two stages. In the first stage (which we call
segmentation), the acoustic mixture is decomposed into
‘sensory elements’. In the second stage (grouping), elements
which are likely to have arisen from the same environmental
event are combined to form a perceptualstream. Streams are

subjected to higher-level processing, such as spe
recognition and understanding.

Over the last decade or so the field of computational audito
scene analysis (CASA) has emerged, which aims to deve
computer systems that mimic the sound separation ability
human listeners [6], [4], [11], [9]. To date, however, th
performance of these systems has been disappointing.
previous article, we have proposed that performance could
improved by grounding CASA more firmly in the
neurobiological mechanisms of hearing, rather than ru
based implementations of Bregman’s grouping heurist
[14]. Accordingly, we described aneural oscillatorapproach
to CASA, which uses a neurobiologically plausibly networ
of neural oscillators to encode the grouping relationshi
between acoustic features (see also [18]). In such netwo
oscillators that belong to the same stream are synchroni
(phase locked with zero phase lag), and are desynchroni
from oscillators that belong to different streams. Previous
we have shown that the neural oscillator approach to CAS
is able to segregate speech from interfering sounds with so
success [14], [17].

The second motivating factor in our work is the observatio
that speech is a remarkably robust communication sign
Psychophysical studies have shown that speech percep
remains largely unaffected by distortion or seve
bandlimiting of the acoustic signal (see [16] for a review).

Cooke and his co-workers have interpreted this robustnes
an ability of speech perception mechanisms to deal w
‘missing data’ [7], [8]. They propose an approach t
automatic speech recognition in which a conventional hidd
Markov model (HMM) classifier is adapted to deal with
missing or unreliable acoustic evidence. The princip
advantage of this approach is that it makes no stro
assumptions about the characteristics of the no
background in which the target speech sounds are embed
The neural oscillator approach to CASA is an ideal front-en
for missing data speech recognition, since the state o
neural oscillator network may be directly interpreted as
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time-frequency ‘mask’; in other words, active oscillators
represent acoustic components that are available for
recognition, whereas inactive oscillators represent missing or
unreliable acoustic evidence.

Compared to our previous work [14], the current paper
introduces a number of innovations. First, we demonstrate
that a neural oscillator model of CASA can form an effective
preprocessor for missing data recognition of speech. Second,
we introduce a technique for performing spectral subtraction
within a neural oscillator framework. Finally, our previous
model is simplified to reduce its computational cost (albeit
with the loss of some generality), thus leading to a system
that can be effectively applied to large corpora of test data.

2. Model description

The input to the model consists of a mixture of speech and an
interfering sound source, sampled at a rate of 20 kHz with 16
bit resolution. This input signal is processed in four stages,
which are described below and shown schematically in
Figure 1.

2.1. Peripheral auditory processing

Peripheral auditory frequency selectivity is modelled using a
bank of 32 gammatone filters with center frequencies equally
distributed on the equivalent rectangular bandwidth (ERB)
scale between 50 Hz and 8 kHz [4]. Inner hair cell function
is approximated by half-wave rectifying and compressing the
output from each filter. The resulting simulated auditory
nerve firing patterns are used to compute a correlogram (see
below).

In a second processing pathway, the instantaneous Hilbert
envelope is computed from the output of each gammatone
filter [6]. This is smoothed with a first-order lowpass filter
with a time constant of 8 ms, and then sampled at intervals of
10 ms to give a map of auditory firing rate (figure 2A).

2.2. Mid-level auditory representations

The second stage of the model extracts periodicity
information from the simulated auditory nerve firing

patterns. This is achieved by computing a runnin
autocorrelation of the auditory nerve activity in each chann
forming a representation known as acorrelogram. At time
stepj, the autocorrelationA(i,j,τ) for channeli with time lag
τ is given by:

(1)

Here,r is the simulated auditory nerve activity, andw is a
rectangular window of widthM time steps. We useM=600,
corresponding to a window duration of 30 ms. For efficienc
the fast Fourier transform is used to evaluate (1) in t
frequency domain. The correlogram is computed at 10
intervals.

For periodic sounds, a characteristic ‘spine’ appears in
correlogram which occurs at a lag corresponding to t
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Figure 2: A. Auditory firing rate for the utterance “1159” in
a background of factory noise. The SNR was 10 dB. Light
regions indicate higher firing rate. B. The stream in th
oscillator network corresponding to unpitched acous
events; active oscillators are shown in white. C. The strea
corresponding to pitched acoustic events (voiced speech

A

B

C

Time [seconds]

F
re

qu
en

cy
 [H

z]
F

re
qu

en
cy

 [H
z]

F
re

qu
en

cy
 [H

z]

Figure 1. Schematic diagram of the speech separation and recognition system.
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stimulus period (upper panel of figure 3). This pitch-related
structure can be emphasized by forming a ‘pooled’
correlograms(j,τ):

(2)

The pooled correlogram exhibits a clear peak at the
fundamental period of a harmonic sound (lower panel of
figure 3), and the height of this peak can be interpreted as a
measure of pitch strength [12].

2.3. Neural oscillator network

Our model employs a simplified version of the locally
excitatory globally inhibitory oscillator network (LEGION)
proposed in [15]. The building block of LEGION is a single
oscillator consisting of a reciprocally connected excitatory
unit x and inhibitory unity. The network takes the form of a
time-frequency grid (see figure 1), so we index each
oscillator according to its frequency channel (i) and time
frame (j):

(3a)

(3b)

Here,Iij represents the external input to the oscillator andε,
γ andβ are parameters. ForIij > 0, (3) has a periodic solution
which alternates between silent and active phases of n
steady-state behaviour. In contrast, ifIij < 0 then the solution
has a stable fixed point and no oscillation is produced. Hen
oscillations in (3) are stimulus dependent. The system m
be regarded as model for the spiking behaviour of a sing
neuron, or as a mean field approximation to a network
reciprocally connected excitatory and inhibitory neurons.

In the general form of LEGION,S denotes coupling from
other oscillators in the network, including a global inhibito
which serves to desynchronize different oscillato
populations. Here, we use a simplified network in whic
there are no excitatory connections between oscillators, a
thereforeSrepresents an input from the global inhibitor only

(4)

where

(5)

This formulation of LEGION is similar to that described in
[5]. Here, Wz represents the weight of inhibition from the
global inhibitor,z. The activity ofz is defined as

(6)

whereσ = 0 if xij < θz for every oscillator (i,j), andσ = 1 if xij
≥ θz for at least one oscillator. Here,θzrepresents a threshold
Once an oscillator is in the active phase, this threshold
exceeded and the global inhibitor receives an input. In tu
the global inhibitor feeds back inhibition to the oscillators i
the network, causing the oscillatory responses to differe
objects to desynchronize. The parameters for all simulatio
reported here wereε = 0.1,γ = 6.0,β = 4.0,Wz= 0.2,θz= 0.1,
φ = 3.0 andK = 50.

2.4. Spectral subtraction and harmonic grouping

Segregation of speech from a noise background is achie
in the model by two mechanisms; spectral subtraction a
harmonic grouping. Both mechanisms can be convenien
implemented within a neural oscillator framework.

Spectral subtraction is a well-known technique fo
suppressing a stationary or slowly varying noise backgrou
[2]. Here we use a simple non-adaptive spectral subtract
approach. For each channeli of the auditory model, we
compute a fixed noise estimateni from the mean of the first
10 frames of the smoothed firing rate response. On
oscillators corresponding to time-frequency regions who
energy lie aboveni receive an input:

(7)
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Figure 3: Correlogram (upper panel) and pooled
correlogram (lower panel) for time frame 60 of the mixture
of speech and noise shown in Figure 2. The fundamental
period of the speech source is marked with an arrow.
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Here,H is the Heaviside function (i.e.,H(x) = 1 forx ≥ 0, and
zero otherwise) andeij is the smoothed firing rate response in
channeli at timej.

The termpij in (7) is an input whose value depends on
whether the corresponding time-frequency region (i,j) is
classified as pitched or unpitched. Initially, the pooled
correlogram is used to identify time frames that contain a
strong pitch. Global pitch strengthpg(j) at time framej is
given by

(8)

Here, τp represents the autocorrelation delay at which the
largest peak occurs in the pooled correlogram, within a pitch
range of 60 Hz to 500 Hz. Therefore (8) represents a measure
of the height of the pitch peak relative to the energy in that
time frame (as estimated from the pooled autocorrelation at
zero delay). Similarly, we estimate the local pitch strength
pc(i,j) in each channeli at time framej as follows:

(9)

Finally, pij  is defined as:

(10)

Hereθp andθc are thresholds. We useθp=0.65 andθc=0.7.

Taken together, (7)-(10) mean that oscillators corresponding
to acoustic components which lie below the noise floor
receive zero input; otherwise, each oscillator receives one of
two inputs depending on whether the component it represents
is pitched or unpitched. The effect of this input differential,
when combined with the effect of the global inhibitor, is to
cause oscillators representing pitched components to
desynchronize from those representing unpitched
components. This behaviour is illustrated in figure 2. The
figure indicates that spectral subtraction is effective in
suppressing the noise background, except when impulsive
intrusions occur. However, because the impulsive sounds are
unpitched, they are segregated from the pitched (speech)
components by the harmonic grouping mechanism.

3. Evaluation

3.1. Missing data speech recogniser

In general, the speech recognition problem is to assign an
observed acoustic vectorv to a classC. However, in cases
where some elements ofv are missing or unreliable, the
likelihood f(v|C) cannot be evaluated in the conventional
manner. The ‘missing data’ solution to this problem is to
partition v into reliable partsvr and unreliable partsvu [8].
The components ofvr have known values and are directly

available to the classifier, whereas the components ofvu have
uncertain values. One approach, then, is to classify ba
solely on the reliable data, by replacingf(v|C) with the
marginal distributionf(vr|C). However, whenv is an acoustic
vector additional constraints can be exploited, since it
known that the uncertain components will have bound
values. Here,v is an estimate of auditory nerve firing rate, s
the lower bound forvu will be zero and the upper bound will
be the observed firing rate. Accordingly, in the experimen
described here we employ a missing data recogniser base
the ‘bounded marginalisation’ method (see [8] for details)

Clearly, the missing data approach requires a process wh
will partition v into (vr, vu). In this respect, the neural
oscillator network forms an ideal preprocessor for missin
data recognition, since the state of the network direc
indicates whether each element in the time-frequency pla
is reliable or unreliable. When the speech stream is in
active phase, active oscillators correspond to the compone
of vr; they represent reliable spectral regions that are pitch
and lie above the noise floor. Similarly, oscillators whic
remain silent when the speech stream is in its active ph
represent unreliable components,vu. This is illustrated in
figure 2C, which may be interpreted as a mask for th
corresponding map of firing rate shown in figure 2A. I
figure 2C, white pixels (active oscillators) indicate reliabl
time-frequency regions and black pixels (inactive oscillator
indicate unreliable time-frequency regions.

3.2. Corpus

Following Cookeet al. [8], we evaluated our system using
the male utterances from the TiDigits connected digit corp
[10]. Auditory rate maps were obtained for the trainin
section of the corpus as described in section 2.1, and use
train 12 word-level HMMs (a silence model, ‘oh’, ‘zero’ and
‘1’ to ‘9’). A subset of 240 utterances from the TiDigits tes
set were used for testing. To each test utterance, ‘facto
noise from the NOISEX corpus [13] was added with
random offset at a range of SNRs from -5 dB to 20 dB in
dB increments. The ‘factory’ noise intrusion represents
reasonable challenge for our system; in addition to
continuous noise background with energy peaks in t
formant region of speech, it contains occasional noise bur
that are reminiscent of hammer blows.

3.3. Results

Recognition results are shown in Figure 4. Baselin
performance, equivalent to that of a conventional HMM
based speech recogniser, was obtained by recognising
noisy rate maps directly. The figure also shows th
performance of the combined CASA preprocessor a
missing data recogniser. At high SNRs (20 dB and abov

pg j( ) s j τp,( ) s j 0,( )⁄=

pc i j,( ) A i j τp, ,( ) A i j 0, ,( )⁄=

pij
0.2 if pg j( ) θp and pc i j,( ) θc>>

0.15 otherwise



=
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the conventional recogniser outperforms the combined
CASA and missing data system. However, as the SNR falls,
the accuracy of the conventional recogniser drops very
sharply, whereas the performance of the missing data system
degrades gracefully. At some SNRs, the combined CASA
and missing data processing give a very substantial
improvement in recognition accuracy (in excess of 40% at 5
dB).

Figure 4 also shows the recognition performance of a
conventional speech recogniser when combined with a
spectral subtraction algorithm (data from [8]). Again, this
outperforms our CASA system at high SNRs, but performs
relatively poorly as the SNR falls.

4. Discussion

The pattern of results in Figure 4 suggest that our CASA
system, when combined with a missing data approach,
provides speech recognition performance which far exceeds
that of a conventional ASR system at low SNRs. Similarly,
our CASA preprocessor outperforms a conventional spectral
subtraction front-end at low SNRs. Spectral subtraction
performs poorly because the ‘factory’ noise background is
nonstationary; impulsive noise bursts cannot be effectively
removed by the spectral subtraction technique, but they are

identified as a separate stream by our neural oscilla
network.

We should note, however, that a mechanism for removi
unpitched acoustic components is a double-edged sword
also removes unvoiced regions of speech. Hence,
recognition performance of the combined CASA and missi
data approach is based on recognition of voiced speech o
Consequently, our CASA system performs less well than
conventional recogniser or spectral subtraction front-e
when the SNR is high (20 dB or above). It is likely tha
overall performance could be further improved by usin
delta features [1]. Also, the number of insertion errors cou
be reduced by forcing silence at the start and end of t
decodings.

The approach described here is a simplification of our earl
two-layer neural oscillator CASA model [14]. These
simplifications have been made to reduce the computatio
cost of the model, at the loss of some generality. T
approach described here works well when speech
contaminated with broadband interfering sounds which a
weakly harmonic, or unpitched. However, it will fail when
the interfering sound source is strongly harmonic, such as
voice of another speaker.

In two respects, however, the current study extends o
previous model. First, we have shown that spectr
subtraction can be conveniently implemented within th
neural oscillator framework. Also, our previous model di
not provide a mechanism for grouping acoustic compone
that are separated in time (‘sequential grouping’ [3]). W
have implemented such a mechanism here, albeit a v
simple one. Future work will address the issue of sequen
grouping in a more general way, by using binaural cues
group acoustic components that originate from the sa
location in space, and by tracking the pitch contour of
single speaker.
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