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Abstract subjected to higher-level processing, such as speech

recognition and understanding.
In order to recognise speech in a background of other
sounds, human listeners must solve two perceptual problemsOVver the last decade or so the field of computational auditory
First, the mixture of sounds reaching the ears must be parsedscene analysis (CASA) has emerged, which aims to develop
to recover a description of each acoustic source, a processcomputer systems that mimic the sound separation ability of
termed ‘auditory scene analysis’. Second, recognition of human listeners [6], [4], [11], [9]. To date, however, the
speech must be robust even when the acoustic evidence Rerformance of these systems has been disappointing. In a
missing due to masking by other sounds. This paperPrevious article, we have proposed that performance could be
describes an automatic speech recognition system thaimproved by grounding CASA more firmly in the
addresses both of these issues, by combining a neuraneurobiological mechanisms of hearing, rather than rule-
oscillator model of auditory scene analysis with a framework based implementations of Bregman’s grouping heuristics

for ‘missing data’ recognition of speech. [14]. Accordingly, we describedreeural oscillatorapproach
to CASA, which uses a neurobiologically plausibly network
1. Introduction of neural oscillators to encode the grouping relationships

between acoustic features (see also [18]). In such networks,

Recent advances in speech recognition technology have beepscillators that belong to the same stream are synchronized
impressive, but robust recognition of speech in noisy (phase locked with zero phase lag), and are desynchronized

acoustic environments still remains a largely unsolved from oscillators that belong to different streams. Previously,
problem. This state of affairs stands in contrast to the speecf{'€ Nave shown that the neural oscillator approach to CASA
perception performance of human listeners, which is robust' able to segregate speech from interfering sounds with some
in the presence of interfering sounds. It is likely, therefore, Success [14], [17].

that the noise robustness of automatic speech recognition can

be improved by an approach which is more firmly based on The second motivating factor in our work is thg opservgtion
principles of human auditory function. that speech is a remarkably robust communication signal.

Psychophysical studies have shown that speech perception

Here, we describe an approach to speech separation anf@mains largely —unaffected by distortion or severe
recognition that is strongly motivated by an auditory account, Pandlimiting of the acoustic signal (see [16] for a review).
Our approach is motivated by two observations about the ) ) )

mechanisms of auditory function in general, and those OfCooke_ _and his co-workers ha\_/e mterprete(_ll this robustnes_s as
speech perception in particular. First, the auditory system is2" ability of s'peech perception mechanisms to deal with
a sound separatgar excellencehuman listeners are able to  Missing data’ [7], [8]. They propose an approach to
parse a mixture of sounds in order to segregate a target sourcaUtomatic speech recognition in which a conventional hidden
from the acoustic backgound. Bregman [2] has coined theMarkov model (HMM) classifier is adapted to deal with
term ‘auditory scene analysis’ for this process, and suggest&nissing or unreliable acoustic evidence. The principal
that it proceeds in two stages. In the first stage (which we call@dvantage of this approach is that it makes no strong

segmentatioyy the acoustic mixture is decomposed into @SSumptions about the characteristics of the noise
‘sensory elements’. In the second stage(iping, elements background in which the target speech sounds are embedded.

which are likely to have arisen from the same environmental | "€ neural oscillator approach to CASAis an ideal front-end

event are combined to form a percepts@éam Streams are for missing data speech recognition, since the state of a
neural oscillator network may be directly interpreted as a
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Figure 1. Schematic diagram of the speech separation and recognition system.

time-frequency ‘mask’; in other words, active oscillators patterns. This is achieved by computing a running
represent acoustic components that are available forautocorrelation of the auditory nerve activity in each channel,
recognition, whereas inactive oscillators represent missing offorming a representation known asarrelogram At time

unreliable acoustic evidence. stepj, the autocorrelatiod(i,j,T) for channei with time lag
T is given by:

Compared to our previous work [14], the current paper M—1

introduces a number of innovations. First, we demonstrate A, j, 1) = 2 ri,j —k)r(i,j -k —t)w(k) (1)

that a neural oscillator model of CASA can form an effective K=o

preprocessor for missing data recognition of speech. Seconq,1ere ( is the simulated auditory nerve activity, andis a
we introduce a technique for performing spectral subtractionrect‘,jl’ngular window of widtiM time steps. We u’sM:GOO

W't:l'”l"?‘ ngurallifpsdutlIatordfram.(tawork. Flrtla:.Iy, olur prteV|(|)tl)Js_t corresponding to a window duration of 30 ms. For efficiency,
model is simplified to reduce its computational cost (albet the fast Fourier transform is used to evaluate (1) in the

with the loss of some generality), thus leading to a syStemfrequency domain. The correlogram is computed at 10 ms
that can be effectively applied to large corpora of test data. intervals

2. Model description For periodic sounds, a characteristic ‘spine’ appears in the

. ) ) correlogram which occurs at a lag corresponding to the
The input to the model consists of a mixture of speech and an

interfering sound source, sampled at a rate of 20 kHz with 16A_ g
bit resolution. This input signal is processed in four stages, T
which are described below and shown schematically in
Figure 1.
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2.1. Peripheral auditory processing

Peripheral auditory frequency selectivity is modelled using a
bank of 32 gammatone filters with center frequencies equally
distributed on the equivalent rectangular bandwidth (ERB)
scale between 50 Hz and 8 kHz [4]. Inner hair cell function

is approximated by half-wave rectifying and compressing the
output from each filter. The resulting simulated auditory

nerve firing patterns are used to compute a correlogram (seeg
below).
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In a second processing pathway, the instantaneous Hilbert
envelope is computed from the output of each gammatone
filter [6]. This is smoothed with a first-order lowpass filter

with a time constant of 8 ms, and then sampled at intervals of
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10 ms to give a map of auditory firing rate (figure 2A). Figure 2: A. Auditory firing rate for the utterance “1159” in
a background of factory noise. The SNR was 10 dB. Lighter
2.2. Mid-level auditory representations regions indicate higher firing rate. B. The stream in the

oscillator network corresponding to unpitched acoustic
The second stage of the model extracts periodicity €vents; active oscillators are shown in white. C. The stream
information from the simulated auditory nerve firing corresponding to pitched acoustic events (voiced speech).



Here, I;; represents the external input to the oscillator and

‘r ; AT A yandp are parameters. Féy >0, (3) has a periodic solution
tn’If"I’J'HWMWMWMWNMW which alternates between silent and active phases of near
w207 WW\" i MW\N* , i i steady-state pehaviqur. In contras},-ﬂff 0 t.hen the solution
}M‘AMMM%M has a stable fixed point and no oscillation is produced. Hence,
tf "';%“ewm Q;W',W 'M. oscillations in (3) are stimulus dependent. The system may

N A ‘ \ be regarded as model for the spiking behaviour of a single
1205 I""’V‘\‘VV\«\'\\‘W%J"‘V\V'VA neuron, or as a mean field approximation to a network of
/"l“‘ﬁ“‘é‘\\\ﬁv"{‘lwiel reciprocally connected excitatory and inhibitory neurons.
‘/,'/‘\’QMA' In the general form of LEGIONS denotes coupling from
A'AA other oscillators in the network, including a global inhibitor
§ /% which serves to desynchronize different oscillator
populations. Here, we use a simplified network in which
50 there are no excitatory connections between oscillators, and
¥ thereforeSrepresents an input from the global inhibitor only:
S=-WS,(z8,) (4)

Channel Center Frequency [Hz]
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This formulation of LEGION is similar to that described in
Figure 3: Correlogram (upper panel) and pooled [5]. Here, W, represents the weight of inhibition from the
correlogram (lower panel) for time frame 60 of the mixture global inhibitor,z. The activity ofzis defined as

of speech and noise shown in Figure 2. The fundamental .

period of the speech source is marked with an arrow. 2= 9(0,-2) 6)

whereo = 0 if x; < 6, for every oscillatori(j), ando = 1 if X;
d > 0, for at least one oscillator. Her@, represents a threshold.
Once an oscillator is in the active phase, this threshold is
exceeded and the global inhibitor receives an input. In turn,
the global inhibitor feeds back inhibition to the oscillators in
_ o the network, causing the oscillatory responses to different
s(ht) = 3 A1) (2) objects to desynchronize. The parameters for all simulations
=1 reported here were=0.1,y=6.0,8 = 4.0,W,=0.2,0,=0.1,
The pooled correlogram exhibits a clear peak at the@= 3.0 andK = 50.
fundamental period of a harmonic sound (lower panel of
figure 3), and the height of this peak can be interpreted as a  2.4. Spectral subtraction and harmonic grouping
measure of pitch strength [12].

stimulus period (upper panel of figure 3). This pitch-relate
structure can be emphasized by forming a ‘pooled’
correlograns(j,1):
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Segregation of speech from a noise background is achieved
2.3. Neural oscillator network in the model by two mechanisms; spectral subtraction and

harmonic grouping. Both mechanisms can be conveniently
Our model employs a simplified version of the locally implemented within a neural oscillator framework.
excitatory globally inhibitory oscillator network (LEGION)
proposed in [15]. The building block of LEGION is a single Spectral subtraction is a well-known technigue for
oscillator consisting of a reciprocally connected excitatory suppressing a stationary or slowly varying noise background
unit x and inhibitory unity. The network takes the form of a [2]. Here we use a simple non-adaptive spectral subtraction
time-frequency grid (see figure 1), so we index each approach. For each channiebf the auditory model, we
oscillator according to its frequency channél #nd time compute a fixed noise estimatefrom the mean of the first
frame (): 10 frames of the smoothed firing rate response. Only
oscillators corresponding to time-frequency regions whose
energy lie above, receive an input:

yij = S(V(l*'tanr(xij/B))—yij) (3b) lij = H(eij—ni)pij (7)

: 3
Xij = 3% =X+ 2=y +1; +S (3a)



Here,H is the Heaviside function (i.eH(x) = 1 forx= 0, and available to the classifier, whereas the componenig lbhve
zero otherwise) angjj is the smoothed firing rate response in uncertain values. One approach, then, is to classify based
channel at timej. solely on the reliable data, by replaciry|C) with the
marginal distributiorf(v,|C). However, wherv is an acoustic
The termp; in (7) is an input whose value depends on vector additional constraints can be exploited, since it is
whether the corresponding time-frequency regiof) (s known that the uncertain components will have bounded
classified as pitched or unpitched. Initially, the pooled values. Herey is an estimate of auditory nerve firing rate, so
correlogram is used to identify time frames that contain athe lower bound fow, will be zero and the upper bound will
strong pitch. Global pitch strengthy(j) at time framej is be the observed firing rate. Accordingly, in the experiments
given by described here we employ a missing data recogniser based on
py() = S(i.1,)/s(}, 0) (8) the ‘bounded marginalisation’ method (see [8] for details).

Here, T, represents the autocorrelation delay at which the Clearly, the missing data approach requires a process which
largest peak occurs in the pooled correlogram, within a pitchwill partition v into (v, v,). In this respect, the neural
range of 60 Hz to 500 Hz. Therefore (8) represents a measurescillator network forms an ideal preprocessor for missing
of the height of the pitch peak relative to the energy in that data recognition, since the state of the network directly
time frame (as estimated from the pooled autocorrelation atindicates whether each element in the time-frequency plane
zero delay). Similarly, we estimate the local pitch strength s reliable or unreliable. When the speech stream is in its

P(i.j) in each channelat time framg as follows: active phase, active oscillators correspond to the components
pe(i i) = A, §, T,)/ A, j, 0) (9) of v;; they represent reliable spectral regions that are pitched

) ) ] and lie above the noise floor. Similarly, oscillators which
Finally, p; is defined as: remain silent when the speech stream is in its active phase

represent unreliable componentg, This is illustrated in
(10) figure 2C, which may be interpreted as a mask for the
corresponding map of firing rate shown in figure 2A. In
HereB, ande are thresholds. We u$g=0.65 and=0.7. ﬂgure 2C, white pixels (active oscillator;) inc!icate rgliable
time-frequency regions and black pixels (inactive oscillators)
Taken together, (7)-(10) mean that oscillators correspondingndicate unreliable time-frequency regions.
to acoustic components which lie below the noise floor
receive zero input; otherwise, each oscillator receives one of 3.2. Corpus
two inputs depending on whether the component it represents ] .
is pitched or unpitched. The effect of this input differential, Following Cookeet al. [8], we evaluated our system using
when combined with the effect of the global inhibitor, is to the male utterances from the TiDigits connected digit corpus
cause oscillators representing pitched components td10]. Auditory rate maps were obtained for the training
desynchronize from those representing  unpitched section of the corpus as described in section 2.1, and used to
components. This behaviour is illustrated in figure 2. The {rain 12 word-level HMMs (a silence model, ‘o, ‘zero’ and
figure indicates that spectral subtraction is effective in ‘1’ t0‘9"). A subset of 240 utterances from the TiDigits test
suppressing the noise background, except when impulsiveés®t were used for testing. To each test utterance, ‘factory’
intrusions occur. However, because the impulsive sounds ar@0ise from the NOISEX corpus [13] was added with a
unpitched, they are segregated from the pitched (speechfandom offset at a range of SNRs from -5 dB to 20 dB in 5

_ E 0.2 if py(j) >0, andp(i, j) > 6,

p..
U 0.15 otherwise

components by the harmonic grouping mechanism. dB increments. The ‘factory’ noise intrusion represents a
reasonable challenge for our system; in addition to a
3. Evaluation continuous noise background with energy peaks in the

formant region of speech, it contains occasional noise bursts
3.1. Missing data speech recogniser that are reminiscent of hammer blows.

In general, the speech recognition problem is to assign an 3.3. Results
observed acoustic vectorto a classC. However, in cases
where some elements of are missing or unreliable, the
likelihood f(v|C) cannot be evaluated in the conventional
manner. The ‘missing data’ solution to this problem is to
partition v into reliable parts/, and unreliable parts,, [8].
The components of, have known values and are directly

Recognition results are shown in Figure 4. Baseline
performance, equivalent to that of a conventional HMM-
based speech recogniser, was obtained by recognising the
noisy rate maps directly. The figure also shows the
performance of the combined CASA preprocessor and
missing data recogniser. At high SNRs (20 dB and above),



identified as a separate stream by our neural oscillator

100
P network.
ool | & CASA + MD ASR ]
sol i ggggﬁgf'gﬂ%&éﬁ& ? We .should note, 'however, that a mechanism for removing
unpitched acoustic components is a double-edged sword; it
70+ also removes unvoiced regions of speech. Hence, the
g sol recognition performance of the combined CASA and missing
- data approach is based on recognition of voiced speech only.
§ 50+ Consequently, our CASA system performs less well than a
3 conventional recogniser or spectral subtraction front-end
2 40r when the SNR is high (20 dB or above). It is likely that
30! overall performance could be further improved by using
[ delta features [1]. Also, the number of insertion errors could
20r be reduced by forcing silence at the start and end of the
decodings.
10
0 The approach described here is a simplification of our earlier
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200 two-layer neural oscillator CASA model [14]. These

simplifications have been made to reduce the computational

Figure 4: Recognition accuracy for a corpus of spoken digits COSt of the model, at the loss of some generality. The
in factory noise. The neural oscillator approach to CASA approach described here works well when speech is
outperforms a spectral subtraction preprocessor (data frongontaminated with broadband interfering sounds which are
[8]), and when combined with missing data techniques it weakly harmonic, or unpitched. However, it will fail when

of a conventional automatic speech recogniser (ASR). voice of another speaker.

In two respects, however, the current study extends our
the conventional recogniser outperforms the combinedprevious model. First, we have shown that spectral
CASA and missing data system. However, as the SNR falls,gyptraction can be conveniently implemented within the
the accuracy of the conventional recogniser drops Vveryneyral oscillator framework. Also, our previous model did
sharply, whereas the performance of the missing data systemot provide a mechanism for grouping acoustic components
degrades gracefully. At some SNRs, the combined CASAhat are separated in time (‘sequential grouping’ [3]). We
and missing data processing give a very substantialyave implemented such a mechanism here, albeit a very
improvement in recognition accuracy (in excess of 40% at Ssimple one. Future work will address the issue of sequential
dB). grouping in a more general way, by using binaural cues to

group acoustic components that originate from the same

Figure 4 also shows the recognition performance of ajocation in space, and by tracking the pitch contour of a
conventional speech recogniser when combined with agingle speaker.

spectral subtraction algorithm (data from [8]). Again, this
outperforms our CASA system at high SNRs, but performs
relatively poorly as the SNR falls.
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