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Abstract – We propose and test a novel location-based 
approach for  speech segregation. Within a nar row frequency 
band modifications to the relative energy of the target source 
with respect to the interfering energy tr igger  systematic 
deviations for  binaural cues. For  a given spatial configuration, 
this interaction produces characteristic clustering in the 
binaural feature space. 
 
 

I. INTRODUCTION 
 

The perceptual ability to detect, discriminate and 
recognize one utterance in a background of acoustic 
interference has been studied extensively under both 
monaural and binaural conditions [1] [2] [3]. The auditory 
system is able to segregate the speech signal from the 
acoustic mixture using various cues, including pitch, 
envelope, and location, in a process that is known as auditory 
scene analysis [1].  

It is widely acknowledged that for human audition 
interaural time differences (ITD) represent the main binaural 
cue used at low frequencies  (<2 kHz), whereas in the high 
frequency range both interaural intensity differences (IID) 
and interaural time differences between signal envelopes 
(IED) are used [2]. The resolution of the binaural cues has 
implications in both localization and recognition tasks. 
Experiments show that listeners can reliably detect 10-15 ms 
ITD from the median plane, which corresponds to 1-5 
degrees in azimuth separation. On the other hand, the 
smallest detectable change in IID is about 0.5 dB to 1 dB at 
all frequencies. Resolution deteriorates as the reference 
azimuth gets larger and it has been reported to reach up to 10 
degrees when the reference source is located far to the side of 
the head. 

Increased speech intelligibility in binaural listening 
compared to the monaural case has prompted research in 
designing cocktail-party processors based on psychoacoustic 
principles [4] [5] [6]. In particular, building on a previous 
cross-correlation model for sound localization, Bodden 
proposed a model that estimates optimal time-varying Wiener 
coefficients for all critical bands by comparing the neural 
excitation patterns in cross-correlation with stored patterns 
obtained from clean speech.  Although computationally 
expensive, Bodden’s model can produce substantial 
enhancement in speech intelligibility.  

In this study we propose a sound segregation model 
using binaural cues extracted from the responses of a 
KEMAR dummy head that realistically simulates the filtering 
process of the head and the external ear.  We introduce an 
“ ideal”  time-frequency binary mask that is motivated by the 
human auditory masking phenomenon, which selects the 
target if it is stronger than the interference in a local time-
frequency region. If the original unmixed signals are 
available, one can construct the ideal mask in the following 
way: retain the time-frequency regions for which target 
energy exceeds interference energy and discard the other 
regions. Ideal masks generate high quality reconstruction for 
a variety of signals, and similar binary masks have been 
shown to provide a very effective front-end to robust speech 
recognition [7]. Hence, our model aims to estimate the ideal 
binary mask. Statistics for the relationship between the 
relative energy and the deviation of the binaural cues are at 
the core of our system. We show that for anechoic mixtures 
of multiple sound sources there exist strong correlation 
between the energy ratio and ITD and IID cues within a 
narrow frequency band. For a given spatial configuration, this 
interaction produces characteristic clustering in the binaural 
feature space. Consequently, we employ a nonparametric 
classification method to determine decision regions for the 
ITD/IID features that correspond to an optimal estimate for 
the ideal mask. 

Related models for estimating target masks have been 
proposed previously [8] [9]. Such models, however, assume 
input directly from microphone recordings. As a result, head-
related filtering is not considered.  Simulation of human 
binaural hearing introduces different constraints as well as 
clues to the problem. First, both ITD and IID should be 
utilized since IID is more reliable in high frequencies than 
ITD. Second, frequency-dependent combinations of ITD and 
IID will arise naturally for a fixed spatial configuration. 
Consequently, channel-dependent training for each frequency 
band becomes necessary. Our tests with just ITD (as in [8]) or 
simple channel-independent classification (as in [9]) yield 
considerably inferior performance. 

Section 2 describes the architecture of our model. 
Section 3 introduces our method for estimating the ideal 
binary mask. Section 4 presents systematic evaluation of the 
system for two and three sources and a comparison with the 
Bodden model. 
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Figure 1: Schematic diagram of the model. We obtain binaural signals by convolving the input signals with head related impulse responses (HRIR). A 
psychoacoustically motivated auditory periphery is simulated: cochlear filtering, half-wave rectification to simulate auditory nerve firing, low pass 
fi ltering for evaluating envelopes at high frequencies and square root to simulate saturation effects. Azimuth localization is based on the cross-correlation 
mechanism. We compute local ITD and IID independently for all frequency channels. A decision block produces an estimation of the ideal binary mask. 
The resynthesis path allows the reconstruction of the target signal.  

 
II. MODEL ARCHITECTURE 

 
Our model consists of the following five stages: 1) a 

physiological model of auditory periphery; 2) binaural cue 
extraction; 3) azimuth localization for both target and 
interferences; 4) estimation of the ideal binary mask; and 5) 
resynthesis of the target signal (Fig. 1). 

The input to our model is a mixture of two or more 
signals presented at different, but fixed, locations: target 
speech and acoustic interferences, which are sampled at 44.1 
kHz. Binaural signals are obtained by convolving the input 
with measured head related impulse responses (HRIR) from 
a KEMAR dummy head [10]. 

To simulate the auditory periphery we use a bank of 128 
gammatone filters in the range of 80 Hz to 5 kHz as 
described in [11]. In addition, the gains of the gammatone 
filters are adjusted in order to simulate the middle ear 
transfer function. In the final stage of the peripheral model, 
the output of each gammatone filter is half-wave rectified in 
order to simulate the firing probabilities of the auditory 
nerve. In order to process the envelopes of the signals at 
higher frequencies a low-pass filter with cutoff frequency of 
800 Hz is considered. Saturation effects are modeled by 
taking the square root of the signal.  

Current models of azimuth localization almost 
invariably start with the cross-correlation mechanism. We 
utilize the following azimuth localization method: 

1) Compute interaural cross-correlation coefficients at 
time delays equally distributed in the plausible range from –
1 ms to 1 ms for all frequency channels. 

2) In a training phase, we derive frequency-dependent 
nonlinear transformations and map the time-delay axis onto 
an azimuth axis. 

3) Calculate an energy-weighted summary across time 
and frequency and identify the peaks, which generally are 
very close to the true source locations.  

 
 

III.  BINARY MASK ESTIMATION 
 

Our objective is to develop an efficient algorithm for 
estimating the ideal binary mask. Our estimation is based on 
the following observation regarding the acoustic interaction 
of multiple sources: in a narrow band, the ITD and IID 
corresponding to the target source centers around azimuth-
dependent characteristic values. As the interference from 
additional sound sources increases, ITD and IID 
systematically deviate from these values.  
 
A. Pure Tones 
 

In order to investigate the relationship between relative 
signal strengths and ITD for two pure tones with the same 
frequency ω  we derive the cross-correlation function for the 
mixture: 
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in which iA is the amplitude, id  represents the time delay 

for the ith source, and )/)(cos( 212 ddcoeff −+∆= ωϕ  
where ϕ∆ is a function of phase differences between the 

initial signals and those due to the arrival times of the signals 
at the left ear. For simplification, IID is considered 
negligible – true for low-frequency channels. By observing 
deviation of the peak location maxτ from the middle location 

221 /)( dd + , we obtain which source is stronger. 
On the other hand, we estimate IID as the ratio of 

energy at the two ears. Therefore, for two pure tones we 
have: 
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Figure 2: A: Relationship between ITD and the energy ratio. B: Relationship between IID and the energy ratio. C: Clustering in the ITD-
IID feature space. Histograms are obtained for speech at 0° and interfering noise at 30° and  -30°, for the channel number 85 with center 
frequency ~1.7 kHz. 
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where )(ωr
iH and )(ωl

iH represent the right/left HRTF for 
the ith source. 

A systematic change in the relative amplitude results in 
a corresponding shift for both ITD and IID. Moreover, 
thresholds can be derived in order to decide which of the two 
signals is stronger in a specific region. 
 
B. Real Signals 
 

Previously, we studied a method of deriving binary 
decisions independently across frequencies by using ITD for 
low frequency channels (<1.5 kHz) and IID for high 
frequency channels (>1.5 kHz) [12]. Here, we consider 
integrating both features and thus exploit the best 
discrimination power of the two binaural cues for a specific 
configuration. 

We estimate independently for all frequency channels 
the local ITD and IID and the energy ratio E based on 20-ms 
time frames with 10 ms overlap between adjacent time 
frames. IID and energy ratios for the ith channel are 
computed as follows: 
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where il  and ir  refer to the left and right auditory periphery 
output of the ith channel, respectively; is  refer to the output 

for the target signal, whereas in  corresponds to the acoustic 

interference. In computing IID, we use 20 instead of 10 to 
account for the square root operation in the periphery. 

In order to eliminate the multiple peaks in the cross-
correlation function for mid- and high-frequency channels, 
we consider the following strategy. We compute the ideal 
ITD for the target source, iloc  for the ith channel. We study 
deviations from iloc  due to the interferences from other 
sources. Consequently, a local ITD is estimated as the delay 

max
iτ  that corresponds to maximum activity in the cross-

correlation pattern in the range ],[ ππ +− ii locloc  . 
ITD and IID undergo relatively smooth changes with 

the energy ratio in a given frequency channel. In order to 
capture this relationship, statistics are collected for a given 
spatial configuration. We employ the corpus collected by 
Cooke [10], which is commonly used in sound separation 
studies. The corpus has 100 mixtures obtained from 10 
speech utterances mixed with 10 noise intrusions, 
encompassing a variety of common acoustic interferences 
such as telephone ringing, rock music, and other speech. 
Half of the corpus is used for training, and testing is done on 
the rest of the corpus. In Fig. 2 we display statistics for a 
channel with center frequency about 1.5 kHz obtained when 
the target is presented at 0°  (median plane) and two other 
sources are active, at -30° and 30°. When the information is 
displayed in the ITD-IID plane, we observe location-based 
clustering of the binaural cues (Fig. 2C). 

Since we are interested in estimating a binary mask, we 
focus on detecting decision regions in the 2-dimensional 
ITD-IID feature space. Consequently, standard supervised 
learning techniques can be applied. For the ith channel, we 
test the following two hypotheses.  The first one is 0H : 

target is dominant or 50.>iE , and the second one is 1H : 
interference is dominant or 50.<iE . Based on estimates of 

the bivariate densities )|( 0Hxp  and )|( 1Hxp  the 



classification is done in accordance with the maximum a 
posteriori decision rule: 
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There exist a plethora of techniques for probability 

density estimation ranging from parametric techniques (e.g. 
mixture of gaussians) to nonparametric techniques (e.g. 
kernel density estimators). In order to completely 
characterize the distribution of the data we decided to use a 
kernel density estimation method. The selection of the 
smoothing parameters is critical to the success of the 
estimation process: for too small values it approximates the 
data well but it does not generalize well, for too large values 
the structure of the data distribution will disappear. One 
approach for finding the optimal values is the least squares 
cross validation method [13], which is utilized in our 
estimation. Optimal values of the parameters are chosen as 

local minima in the range  [ in σ6141 // − , in σ6123 // − ] where 

iσ  represents the variance for the ith smoothing parameter 
and n is the sample data number. 
 

IV. EVALUATION 
 

In order to evaluate the performance of the system for 
speech segregation, the segregated signal is reconstructed 
from an estimated binary mask following a resynthesis 
method described by Brown and Cooke [14]. In order to 
quantitatively assess system performance, we measure in 
decibels the SNR using the original speech before mixing as 
signal: 
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where )(tso  represents the resynthesized original speech 

signal and )(tse  the reconstructed speech from an estimated 
binary mask signal. One can similarly measure the SNR of 
the mixture by replacing the denominator with )(tsN , the 
resynthesized original interference. 

We compare the SNR gain against results obtained 
using the ideal binary mask. For two-source segregation, the 
system is systematically evaluated at the “better ear”  for 
various combinations of azimuth angles. When the target is 
in the median plane, excellent results are obtained for 
azimuth separation as small as 5°, as shown in Fig. 3A. 
Performance degrades when the target source is moved to 
the side of the head, as shown in Figs. 3B and 3C. This 
pattern of performance is in agreement with psychoacoustic 
data [2]. When comparing the SNR with the SNR in the 
initial mixture, there is an average SNR gain of 14 dB for 
target sources in the median plane. This reduces to 11 dB 
when the target source is at 70°. 

Our approach can be extended to cases with more than 
two sources.  Location methods based on cross-correlation, 
including ours, are not limited to two locations.  With 
identified locations, our model performs target segregation 
in a similar manner.  Fig. 3D illustrates the performance of 
our model for the case of three sources with target located in 
the median plane and two interfering sources at –30° and 
30°. The average SNR gain obtained is approximately 10dB. 
This property of our model differs from many blind source 
separation and array processing methods where the number 
of sensors must be no smaller than the number of sources. 

In order to draw a quantitative comparison, we have 
implemented the Bodden model [6], which produces good-
quality sound separation using source locations. First, we 
note that Bodden’s cocktail-party processor is a great deal 
more complicated than ours. His system uses a 24-channel 
filterbank intended to simulate critical bands and an 
extended cross-correlation mechanism based on contralateral 
inhibition in order to compute ITD in the low-frequency 
range and IID for the high-frequency range. For a fair 
comparison, our implementation of the Bodden system uses 
the same 128 channel gammatone filterbank; we also 
implemented the 24-channel critical bands and the results 
are not as good. We find that, when two sources are 
relatively close, the Bodden model is less robust than ours, 
and our choice of (-10°, 30°) falls into the range where his 
model performs optimally. As shown in Fig. 4, our model 
shows a considerable improvement over the Bodden system  
(~3 dB). 

 
V. CONCLUSION 

 
We have presented a location-based sound segregation 

system, motivated by psychoacoustic and physiological 
studies of the auditory system. The input to the system is 
obtained by convolving the original signals with direction-
dependent HRIRs. The system can be applied to spatial 
configurations with two or more sources. Our approach is 
based on an analysis of the relationship between ITD/IID 
and target/interference energy ratio within narrow bands. 
Our model yields segregation results which constitute a 
significant improvement over previous models. 

Our study proves that the binaural cues are very 
effective in filtering out acoustical interference in anechoic 
room conditions.  We are currently extending our model to 
deal with room reverberations by incorporating the 
precedence effect and forward/backward masking. 
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Figure 3: Systematic evaluation. Black bar represents the mixture 
SNR, white bar is the SNR using the ideal binary mask and gray bar 
corresponds to results from our system. The corpus contains 10 male 
utterances mixed with ten interferences (N0: pure tone; N1: white 
noise; N2: noise burst; N3: ‘ cocktail party’ ; N4: rock music; N5: 
siren; N6: trill  telephone; N7: female speech; N8: male speech; N9: 
female speech). A: Target at 0°, interference at 5°. B: Target at 45°, 
interference at 50°. C: Target at 70°, interference at 75°. D: three-
source configuration: target at 0°, interference at  -30° and 30°.  
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Figure 4: SNR comparison between the Bodden model (black bar) 
and our model (white bar). Target is at 30° and interference -10°. 
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