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At a cocktail party, one can selectively attend to a single voice and filter out all the other acoustical
interferences. How to simulate this perceptual ability remains a great challenge. This paper
describes a novel, supervised learning approach to speech segregation, in which a target speech
signal is separated from interfering sounds using spatial localization cues: interaural time differences
~ITD! and interaural intensity differences~IID !. Motivated by the auditory masking effect, the
notion of an ‘‘ideal’’ time–frequency binary mask is suggested, which selects the target if it is
stronger than the interference in a local time–frequency~T–F! unit. It is observed that within a
narrow frequency band, modifications to the relative strength of the target source with respect to the
interference trigger systematic changes for estimated ITD and IID. For a given spatial configuration,
this interaction produces characteristic clustering in the binaural feature space. Consequently,
pattern classification is performed in order to estimate ideal binary masks. A systematic evaluation
in terms of signal-to-noise ratio as well as automatic speech recognition performance shows that the
resulting system produces masks very close to ideal binary ones. A quantitative comparison shows
that the model yields significant improvement in performance over an existing approach.
Furthermore, under certain conditions the model produces large speech intelligibility improvements
with normal listeners. ©2003 Acoustical Society of America.@DOI: 10.1121/1.1610463#

PACS numbers: 43.72.Ew, 43.66.Ba, 43.66.Qp@DOS#
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I. INTRODUCTION

The perceptual ability to detect, discriminate, and rec
nize one utterance in a background of acoustic interfere
has been studied extensively under both monaural and
aural conditions~Bregman, 1990; Blauert, 1997; Bronkhors
2000!. The human auditory system is able to segregat
speech signal from an acoustic mixture using various cu
including fundamental frequency (F0), onset time and loca
tion, in a process that is known asauditory scene analysis
~ASA! ~Bregman, 1990!. F0 is widely used in computationa
ASA systems that operate upon monaural input—howe
systems that employ only this cue are limited to voic
speech~Brown and Cooke, 1994; Wang and Brown, 199!.
On the other hand, localization~binaural! cues have the ad
vantage of being generally independent of the signal con
and can be used to track a sequence of voiced and unvo
components that originates from the same location in sp

It is widely acknowledged that for human audition, i
teraural time differences~ITD! are the main localization cu
used at low frequencies~,1.5 kHz!, whereas in the high-
frequency range both interaural intensity differences~IID !
and interaural time differences between the envelopes of
signals~IED! are used~Blauert, 1997!. The resolution of the

a!Electronic mail: niki@cis.ohio-state.edu
b!Electronic mail: dwang@cis.ohio-state.edu
c!Electronic mail: g.brown@dcs.shef.ac.uk
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binaural cues has implications for both localization and r
ognition tasks. Headphone experiments show that listen
can reliably detect 10–15ms ITDs from the median plane
which correspond to a difference in azimuth of between
and 5 deg. On the other hand, the smallest detectable ch
in IID by the human auditory system is about 0.5 to 1 dB
all frequencies. Resolution deteriorates as the reference
gets larger, and the difference limen can be as much as
deg when the ITD corresponds to a source located far to
side of the head~Blauert, 1997!.

Classical models for processing binaural cues comp
the acoustic signals at the two ears, although they explain
binaural interaction through different mechanisms. These
clude extensions of the Jeffress coincidence model~Jeffress,
1948; Lindemann, 1986; Gaik, 1993!, the equalization and
cancellation~EC! theory ~Durlach, 1972; Breebaartet al.,
2001!, and auditory-nerve-based models~Colburn, 1977;
Stern and Colburn, 1978!. The goal of this line of research i
to explain experimental data for a number of psychoacou
cal phenomena including lateralization, binaural mask
levels, and the precedence effect~for a review see Stern an
Trahiotis, 1995!.

Increased speech intelligibility in binaural listenin
compared to the monaural case has also prompted resear
designing cocktail-party processors based on psychoaco
principles ~Lyon, 1983; Slatky, 1993; Bodden, 1993; Li
et al., 2001; Whittkop and Hohmann, 2003!. Most cocktail-
party-processor designs utilize the following observation:
14(4)/2236/17/$19.00 © 2003 Acoustical Society of America



es
rrelation
eal bina
FIG. 1. Schematic diagram of the model. Binaural signals are obtained by convolving input signals with measured head related impulse respons~HRIR!
from a KEMAR dummy head. A model of the auditory periphery is employed. Azimuth localization for all the sources is based on a cross-co
mechanism. ITD and IID are computed independently for different frequency channels. A pattern analysis block produces an estimation of an idry
mask, which enables the reconstruction of the target signal and the interfering sound.
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the relative strength of the interference with respect to
target increases, certain attributes of the auditory event
cluding location and spatial extent change systematic
compared to the case of the target source alone. In partic
building on a previous cross-correlation model for sound
calization, Bodden~1993! proposed a model that estimat
optimal time-varying Wiener coefficients for all critica
bands by comparing desired cross-correlation patterns to
served ones. Bodden’s model has shown that psychoaco
cally motivated auditory mechanisms can produce subs
tial enhancement in speech intelligibility~Bodden, 1996!.

In this study, we propose a sound segregation mo
using binaural cues extracted from the responses of a
MAR dummy head that realistically simulates the filterin
process of the head, torso, and external ear~Burkhard and
Sachs, 1975!. Such a model can be applied to, among ot
things, enhancing speech recognition in noisy environme
and improving binaural hearing aid design. A typical a
proach for signal reconstruction uses a time–freque
~T–F! mask: T–F units are weighted selectively in order
enhance the target signal. Here, we introduce the notion o
ideal binary mask, which is defineda priori as follows. An
element in the mask is 1 if the corresponding T–F unit c
tains target energy that is stronger than interference ene
and 0 otherwise. When target and intrusion are available
fore mixing, as is the case during our evaluation, ideal bin
masks can be readily constructed. We call such a maskideal
because its construction requires the knowledge of individ
sound sources before mixing. In addition, from a theoret
ASA perspective, an ideal binary mask gives a performa
ceiling for all binary masks. Note that an ideal mask rema
well-defined for situations when more than one target ne
to be segregated. The ideal mask notion is motivated by
human auditory masking phenomenon, in which a stron
signal masks a weaker one in the same critical band~Moore,
1997!. Moreover, such masks generate high-quality rec
struction for a variety of signals, and have been recen
shown to provide a highly effective front end for robu
speech recognition~Cookeet al., 2001!. Furthermore, as will
be shown later, deviations from ideal binary masks lead
gradual degradation in speech recognition performan
Hence, our model aims to estimate an ideal binary m
using information about the spatial configuration of sou
sources.

Statistics for the relationship between the relat
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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strength of sources and the pattern of binaural cues are a
core of our system. We show for mixtures of multiple sou
sources that there exists a strong correlation between
relative strength of target and interference and estima
ITD/IID, resulting in a characteristic clustering across fr
quency bands. Our aim is to maximize the performance
the system independently for different spatial configuratio
Consequently, we employ a nonparametric classificat
method to determine decision regions in the ITD–IID featu
space that correspond to an optimal estimate for an id
mask. An objective evaluation of the system with both SN
~signal-to-noise ratio! and ASR~automatic speech recogn
tion! measures shows that the results of our system are c
parable with those obtained using ideal binary masks. In
dition, a speech intelligibility evaluation using norm
listeners shows a large improvement under certain co
tions.

The rest of the paper is organized as follows: the n
section contains an overview of the model. Section III d
scribes the peripheral auditory model. Section IV descri
the azimuth localization algorithm. Section V is mainly d
voted to the ideal binary mask estimation, which constitu
the core of the model. Section VI presents the evaluat
results of the system and a quantitative comparison with
Bodden model. In the last section we give further discussi
and future directions.

II. MODEL ARCHITECTURE

Our model consists of the following four stages:~1! a
model of the auditory periphery;~2! binaural cue extraction
and azimuth localization for both target and interferen
based on a cross-correlation mechanism;~3! estimation of an
ideal binary mask; and~4! reconstruction of the target signa
Figure 1 illustrates the model architecture for the case of
sound sources.

The input to our model is a mixture of two or mor
signals at different, but fixed, locations: target speech
acoustic interference. Measurements of head-related tran
functions~HRTF! are a standard method for realistic binau
synthesis. We utilize here a catalog of HRTF measureme
collected by Gardner and Martin~1994! from a KEMAR
dummy head under anechoic conditions. The measurem
consist of left/right KEMAR responses from a distance
1.4 m in the horizontal plane, resulting in 128 point impul
2237Roman et al.: Speech segregation



na
or
s
ce
is

nk
th
ea
ac
ns
re
at

a
r t

le
is

ble
n

W
th

a
th
t
e
,

m
tia

on
le

nc
th
l

te
rfe
ob
IID
io
n
ce
io
D
co
le
ut
ic
nc
e
,
f 8

th
th
y
ri

e
ss-
re-
re-
is

re-
a

age
nce.

n,

be
m-
ers

d to
e

he

ch
a-

na
the

ns-

of
al
ec-
e.
t of

lly
ncy
ing
or

es
n-

ally
ec.
nt
responses at a sampling rate of 44.1 kHz. Binaural sig
are obtained by filtering monaural signals with HRTFs c
responding to the direction of incidence. The response
multiple sources are added at each ear. HRTFs introdu
natural combination of ITD and IID into the signals that
extracted by subsequent stages of our model.

The auditory periphery is simulated using a filterba
that models the cochlear filtering mechanism. In addition,
gains of the filters are adjusted to account for middle-
transfer, which is direction independent. The output of e
filter is processed using a simple model for hair-cell tra
duction, which performs half-wave rectification and squa
root compression. The output of the model gives a firing r
representation of auditory-nerve activity.

Simulated auditory-nerve responses from both ears
evaluated independently for all frequency bands in orde
extract interaural differences. The most common method
determine ITD is cross correlation of the corresponding
and right signals within individual frequency bands, which
calculated for time lags equally distributed in the plausi
range. Our localization stage uses only ITD informatio
Consequently, the system cannot tell front from back.
restrict our model to the half-horizontal plane with azimu
in the range@290°,90°#. Due to some diffraction effects,
frequency-dependent nonlinear transformation from
time-lag axis to the azimuth axis is necessary. The se
cross correlations for all frequency bands and at all tim
results in a 3D structure called the ‘‘cross-correlogram
where the coordinates are given by frequency, azimuth, ti
A cross-correlogram is further evaluated to extract spa
information. Assuming fixed sources, the source locati
are obtained as the positions of the maxima in a poo
cross-correlogram~Shackeltonet al., 1992!—obtained by in-
tegrating the cross-correlogram across time and freque
Further stages of our model use this spatial information:
number of sources, their locations, and the target source
cation.

At the core of our system are decision rules that de
mine whether the target source is stronger than the inte
ence in individual T–F units. The system is based on
served characteristic clustering of extracted ITD and
features. The novelty of our approach lies in the introduct
of supervised learning for different spatial configurations a
across all frequency bands in a joint ITD–IID feature spa
For a given frequency channel and a stimulus configurat
conditional probabilities are estimated from samples of IT
IID, and the corresponding relative strength based on a
pus of training data. Therefore, auditory grouping is imp
mented based on proximity in the ITD–IID space. The o
put of this pattern analysis is a time–frequency mask, wh
is an estimate of an ideal binary mask. The time–freque
resolution for the current implementation is 20-ms tim
frames with a 10-ms frame shift~see, e.g., Wang and Brown
1999!, and 128 frequency channels that cover the range o
Hz to 5 kHz.

The last stage of the model is a reconstruction pa
which allows the target signal to be recovered from
acoustic mixture by nullifying the T–F units dominated b
interference. The method employed here is the same in p
2238 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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ciple as that described by Weintraub~1986! ~see also Brown
and Cooke, 1994!. The target signal is reconstructed from th
output of the gammatone filterbank. To remove acro
channel phase differences, the output of a filter is time
versed, passed through the gammatone filter, and time
versed again. Furthermore, the output for each filter
divided in 20-ms sections with 10-ms overlap that cor
spond to T–F units in the binary mask, and windowed with
raised cosine. Binary weights estimated in the previous st
are then applied to each section to remove the interfere
This method achieves high-quality reconstruction~Wein-
traub, 1986; Brown and Cooke, 1994; Wang and Brow
1999!.

III. AUDITORY PERIPHERY

It is widely acknowledged that cochlear filtering can
modeled by a bank of bandpass filters. The filterbank e
ployed here consists of 128 fourth-order gammatone filt
~Pattersonet al., 1988! following an implementation by
Cooke~1993!. The impulse response of theith filter has the
following form:

gi~ t !5H t3 exp~22pbit !cos~2p f i t1f i !, if t>0,

0, otherwise
~1!

wherebi is the decay rate of the impulse response, relate
the bandwidth of the filter,f i is the center frequency of th
filter, andf i is the phase~here, we setf i to zero!.

The equivalent rectangular bandwidth~ERB! scale is a
psychoacoustic measure of auditory filter bandwidth. T
center frequenciesf i are equally distributed on the ERB
scale between 80 Hz and 5 kHz, and specifically for ea
filter we set the bandwidth according to the following equ
tions ~Glasberg and Moore, 1990!:

ERB~ f i !524.7~4.37f i /100011!, ~2!

bi51.019 ERB~ f i !. ~3!

Since the HRTF reflects the filtering effects due to pin
and meatus but not the middle ear, we adjust the gains of
gammatone filters in order to simulate the middle-ear tra
fer function; such data are provided by Mooreet al. ~1997!.
We include this middle-ear processing for the purpose
physiological plausibility. In the final step of the peripher
model, the output of each gammatone filter is half-wave r
tified in order to simulate firing rates of the auditory nerv
Saturation effects are modeled by taking the square roo
the rectified signal.

Psychophysical models for sound localization genera
employ envelopes of the responses in the high-freque
range. This is supported by discrimination experiments us
transposed stimuli, suggesting similar sensitivity to ITD f
both low- and high-frequency ranges~Bernstein and Trahi-
otis, 2001!. Therefore, we additionally extract the envelop
using the Hilbert transform for channels with center freque
cies above 1.5 kHz. Note that the envelope is not actu
used in our current implementation; rather, it is used in S
V as part of a comparison of the effectiveness of differe
interaural cues.
Roman et al.: Speech segregation
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IV. AZIMUTH LOCALIZATION

Current models of azimuth localization almost inva
ably employ cross correlation, which is functionally equiv
lent to the coincidence detection mechanism proposed
Jeffress~1948!. Cross correlation provides excellent time d
lay estimation for broadband stimuli, and for narrow ba
stimuli in the low-frequency range. However, for hig
frequency narrow band signals it produces multiple ambi
ous peaks. Here, we use the normalized cross correla
computed at lags equally distributed from21 to 1 ms~244
,t,44! using a rectangular integration window of 20 m
~corresponding toK5880 samples!. The cross correlation is
computed for all frequency channels and updated every
ms, according to the following formula for frequency cha
nel i, time framej, and lagt:

C~ i , j ,t!

5
(k50

K21~ l i~ j 2k!2 l̄ i !~r i~ j 2k2t!2 r̄ i !

A(k50
K21~ l i~ j 2k!2 l̄ i !

2A(k50
K21~r i~ j 2k2t!2 r̄ i !

2
,

~4!

where l i , r i refer to the left and right auditory peripher
output of theith channel, andl̄ i , r̄ i refer to their mean value
estimated over the integration window.

For each frequency channel, ITD is estimated as the
corresponding to the position of the maximum in the cro
correlation function. Diffraction effects introduce weak fr
quency dependences for ITD~MacPherson, 1991!. As a re-
sult, we derive frequency-dependent nonline
transformations to map the time-delay axis onto the azim
axis, resulting in a cross-correlogramC( i , j ,w), wherew de-
notes azimuth. The mappings are obtained based on
cross-correlation output in response to white noise prese
systematically at locations in the azimuth range@290°,90°#.
Figure 2 shows three ITD-azimuth mappings, for chann
with center frequencies of 500 Hz, 1 kHz, and 3 kHz. T
functions are monotonic, being sigmoidal at low frequenc
where diffraction effects are greater and increasingly lin
at high frequencies.

In addition, a ‘‘skeleton’’S( i , j ,w) is formed by replac-
ing the peaks in the cross-correlogram with Gaussians wh
widths are narrower than the original peaks. That is, e

FIG. 2. Functions relating azimuth to ITD for three auditory channels w
center frequencies of 500 Hz, 1 kHz, and 3 kHz.
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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local peak generates an impulse of the same height and
the obtained impulse train is convolved with a Gaussi
Here, the width is linear with respect to the center frequen
of the channel. This technique sharpens the cro
correlogram, an effect similar to a lateral inhibition mech
nism ~Arbib, 2003!.

The cross-correlation method provides inconsistent
sults when two acoustic sources are present. Figure 3 sh

FIG. 3. Azimuth localization for a mixture of male utterance at 0° a
female utterance at 20°. The bottom plot in each panel shows a summ
across all rows.~A! Cross-correlation functions for 128 frequency chann
in the range 80 Hz–5 kHz at time frame 40~i.e., 400 ms after the start of the
stimulus!. For clarity, only every other channel is shown, resulting in
channels.~B! Skeleton cross-correlogram for the same time frame. The
row indicates channels that contain roughly equal energy from both ta
and interference.~C! Pooled cross-correlogram for a stimulus of duratio
1.5 s, shown every 20 ms.
2239Roman et al.: Speech segregation
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the cross-correlation functions@Fig. 3~A!# and the skeleton
cross-correlogram@Fig. 3~B!# for a mixture of male speech
presented at 0° and female speech presented at 20°. Her
width of the Gaussians in the skeleton cross-correlog
ranges from 4° at the low-frequency end to 2° at the hi
frequency end. For frequency channels where one sourc
much stronger, activity is observed near the true location
that source. For T–F units where the two sources overlap
peak deviates, generally being closer to the more inte
source. Peaks at both locations can occur in high-freque
channels—this ambiguity is due to the periodicity of t
cross-correlation function. Hence, if little overlapping occu
for a sufficient number of channels a good estimate of
two source locations can be obtained at every time frame
pooling the cross-correlogram across all frequency chann
At time frame j and azimuthw, this yields the following
pooled cross-correlogram:

p~ j ,w!5(
i

S~ i , j ,w!. ~5!

Improved localization results are obtained using
skeleton cross-correlogram proposed here over the stan
cross correlation. Summing across frequencies produ
sharper peaks on the skeleton cross-correlogram; in the
of Fig. 3, the skeleton cross-correlogram gives a good e
mate of source locations, whereas the conventional cr
correlogram does not@compare the bottom plots in Fig. 3~A!
and Fig. 3~B!#. In Fig. 3~C! we display the pooled cross
correlogram for a signal of duration 150 frames~i.e., 1.5 s!.
Peaks in the pooled cross-correlogram indicate the locat
of active sources at every frame. Assuming fixed sourc
multiple locations can be reliably determined by further su
mating the pooled cross-correlogram across time as show
the bottom plot of Fig. 3~C!. This represents our method fo
azimuth localization.

V. IDEAL MASK ESTIMATION

The objective of this stage of the model is to develop
efficient mechanism for estimating an ideal binary ma
which selects the T–F units where the estimated signal
ergy is greater than the noise energy~i.e., greater than 0-dB
SNR!. Note that different SNR criteria are possible for d
fining an ideal binary mask~see Cookeet al., 2001!. In the
absence of evidence for a better SNR measure, we ch
the 0-dB criterion for simplicity. We propose an estimati
method based on the following observation regarding
auditory interaction of multiple sources. In a narrow ban
the ITD and IID corresponding to the target source exh
azimuth-dependent characteristic values. As the interfere
from additional sound sources increases, ITD and IID s
tematically shift away from these values. Consequently, i
local T–F unit both binaural cues can be potentially used
determine whether the target signal dominates.

In what follows, we analyze this phenomenon for t
case of pure tones~see Slatky, 1993, for an extensive stu
of binaural cues with sinusoidal signals!. Although in real-
world scenarios the conditions of this simplified model a
generally not fulfilled, our experimental results show tha
2240 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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similar trend holds for a variety of natural signals when an
lyzed in narrow frequency bands. This analysis also serve
motivate the introduction of our proposed algorithm for t
general case in subsection B.

A. Pure tones

We consider a simple model of two sources emitti
pure tones in a narrow band. In this case, the left-ear and
right-ear responses are given by

l ~ t !5uH1
l ~v1!uA1 sin~v1t !

1uH2
l ~v2!uA2 sin~v2t1Dw!,

~6!
r ~ t !5uH1

r ~v1!uA1 sin~v1t1v1d1!

1uH2
r ~v2!uA2 sin~v2t1v2d21Dw!,

where Ai is the amplitude,v i is the frequency,di corre-
sponds to the interaural time delay~equivalent to the phase
difference between left and right HRTFs at frequencyv i),
andHi

r(v i) andHi
l(v i) represent, respectively, the right an

left HRTF, for theith source.Dw is the sum of phase differ
ences between the initial signals and those due to the ar
times of the signals at the left ear.

To simplify, we neglect the magnitude of the HRTF r
sponse in analyzing ITD, which represents a reasonable
sumption only in a narrow band low-frequency range. T
cross-correlation function for infinite-duration signals is o
tained by

c~t!5 lim
T→`

1

2T E
2T

T

r ~ t !l ~ t1t!dt. ~7!

Observe that in approximating the cross-correlation funct
in a finite duration, there exists a trade-off between the d
ference in frequencyuv12v2u and the total integration time
Therefore, we study the cross correlation under the follow
two conditions.
1. Case 1: v1Äv2Äv

In this case, we have

c~t!5
A1

2

2
cos~v~t2d1!!1

A2
2

2
cos~v~t2d2!!

1A1A2 cosS vS t2
d11d2

2 D D
•cosS Dw1v

d22d1

2 D . ~8!

Due to the periodicity ofc(t), we study the cross-
correlation function on a 2p interval centered atv(d1

1d2)/2. Without loss of generality, assume that the pha
differencesvd1 , vd2 are in this interval; otherwise, simply
shift the phases with multiples of 2p. To fix the discussion
let d1,d2 . By observing the deviation of the peak locatio
tmax from the middle of the two sources, (d11d2)/2, we
obtain the stronger source

tmax.~d11d2!/2⇔A1,A2 . ~9!

This result gives a threshold to decide which source
stronger based on ITD. Furthermore, we want to study h
Roman et al.: Speech segregation
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ITD changes with the relative strengthR5A2 /(A11A2)
P@0,1#. Hence, we derive the solution fortmax as follows:

tmax5
d11d2

2

1
1

v S arctanF ~A2
22A1

2!sinb

~A1
21A2

2!cosb12A1A2 cos~Dw1b!
G

1kp D , ~10!

where b5v@(d22d1)/2#P@0,p# and k is an integer. The
relation obtained in~9! uniquely determineskP$0,61% for
the 2p interval considered. More specifically,b<p/2⇒k
50 and b.p/2⇒k51 when A1,A2 , and k521 when
A1.A2 . Furthermore, simulations and derivations show t
a good approximation for the mean valuet̄max when Dw
varies uniformly in the range@2p,p# is given by

t̄max'H d1 , R,0.5

d11d2

2
, R50.5

d2 , R.0.5.

~11!

2. Case 2: v1Åv2

In this case, due to the orthogonality of sine waves
different frequencies the cross-correlation function becom

c~t!5
A1

2

2
cos~v1~t2d1!!1

A2
2

2
cos~v2~t2d2!!. ~12!

A closed-form solution for the peak location in this ca
does not exist. Instead, we analyze the behavior of the p
location for relatively close angles, i.e.,uv1d12v2d2u
,p/2. In this interval, we apply a second-order Taylor e
pansion as an approximation for the cosine, resulting i
simple solution:tmax5(A1

2v1
2d11A2

2v2
2d2)/(A1

2v1
21A2

2v2
2). Note

FIG. 4. Theoretical approximation for the mean ITD,t̄max, for two pure
tones randomly distributed in a narrow band centered at 500 Hz. They axis
corresponds to the relative strengthR. Two cases are shown:b5p/4 ~solid
line! andb53p/4 ~dashed line!.
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that this is a monotonic function with respect to the relat
strengthR.

For the general case, we observe that as the frequen
v1 andv2 vary uniformly in a narrow band centered atv, a
good approximation for the mean oftmax is given by

t̄max5
d11d2

2
1

1

v S arctanF ~A2
22A1

2!

~A1
21A2

2!
tanbG1kp D ,

kP$0,61%, ~13!

which is the solution for the maximum position in~12! when
v15v2 . This function is monotonically increasing with re
spect toR whenb,p/2 and decreasing whenb.p/2. Figure
4 shows the results whenv5500 Hz andb equalsp/4 and
3p/4, respectively.

A systematic change inR also results in a correspondin
shift in IID. A similar discussion applies here. That is, th
frequency difference between the two tones affects
spread of IID distribution. We do not study the casev1

5v2 , since the results for IID distribution are complex an
not amenable to the analysis used here. In addition, IID
most reliable at high frequencies where filter bandwidths
large. Therefore, we consider the casev1Þv2 . IID is ap-
proximated as the ratio of signal power at the two ears,
sulting in the following expression:

IID510 log10

A1
2uH1

r ~v1!u21A2
2uH2

r ~v2!u2

A1
2uH1

l ~v1!u21A2
2uH2

l ~v2!u2
, ~14!

where the power of a signal u(t) is
limT→` 1/2T *2T

T u2(t)dt. Note that IID is monotonic with
respect to the relative strengthR.

The above analysis suggests that the distribution of
binaural cues in a given filter channel is directly influenc
by the filter bandwidth. To test this, we simulate left a
right signals using Eq.~6!, where the relative strength i
fixed, Dw is uniformly distributed in the range@2p,p#, and
v1,2 in @v2Dv,v1Dv#. Figures 5~A! and ~B! show the
mean and the variance of ITD as a function ofR for the
condition of v5500 Hz, 30° azimuth separation, 20-ms i
tegration time, and fourDv values in the range of 0 to 20
Hz. In the figure,M1 is the ITD mean as derived in~11! and
it approximates well the caseDv50. M2 is the ITD mean
derived in~13! for the more general caseDvÞ0. Similarly,
Figs. 5~C! and ~D! show results for IID whenv52.5 kHz
and fiveDv values in the range of 0 to 400 Hz. Here,M is
the IID mean as derived in~14!. It is worth noting that the
theoretical derivations ofM2 and M approximate well the
simulation results when the bandwidth approaches the a
tory filter ERB, which is 80 Hz for a 500-Hz center fre
quency and 300 Hz for 2.5 kHz. In addition, there is a s
tematic decrease in variance for both ITD and IID asDv
approaches the ERB. This behavior generalizes to other
quencies as well.

To conclude, our analysis shows that ITD and IID u
dergo systematic shifts from the ideal target values as
relative strengthR of two sinusoidal sources is changed.
2241Roman et al.: Speech segregation



f
FIG. 5. The influence of filter bandwidth on the mean and variance of ITD and IID with respect to the relative strengthR. The data are from simulations o
two pure tones uniformly distributed in a narrow band. One tone is at 0° and the another is at 30°. The sampling frequency is 44.1 kHz.~A! Mean ITD as a
function ofR for 500-Hz center frequency and four bandwidths between 0 and 200 Hz. The auditory filter ERB here is 80 Hz.M 1 andM 2 correspond to the
theoretical mean ITD as derived in Eq.~13! and Eq.~14!, respectively.~B! ITD variance for the same condition as in~A!. ~C! Mean IID as a function ofR
for a 2.5-kHz center frequency and five bandwidths between 0 and 400 Hz.M corresponds to the theoretical mean IID as derived in Eq.~15!. The auditory
filter ERB is 300 Hz.~D! IID variance for the same condition as in~C!.
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comparison of the above theoretical derivations with the r
data presented in the next subsection shows that the mat
very close.

B. Model

The analysis of ITD and IID for pure tones shows re
tively smooth changes with the relative strengthR in narrow
frequency bands. In order to capture this relationship in
context of real signals, statistics are collected for individ
spatial configurations during training. Binaural signals a
obtained by convolving with KEMAR HRTFs as explaine
in Sec. II. We employ a training corpus consisting of t
speech signals from the TIMIT database~Garofolo et al.,
1993!: five male utterances and five female utterances
presented in Table I. The speaker ID in the table uniqu
identifies the speaker in the TIMIT database where the
letter indicates the sex of the speaker. In the two-source c
we select S0–S4 to be the target and the rest interferenc
the three-source case, we have S0–S3 as target signal
the two interfering sets are S4–S6 and S7–S9.

Estimates for ITD, IID, andR are extracted indepen
dently for all frequency channels. Since the cross-correla
function is periodic, resulting in multiple peaks for mid
high frequencies, we consider the following strategy for
timating ITD. We study deviations from the target ITD fo
individual frequency channels, which is obtained from t
ITD-azimuth mappings presented in Sec. IV. Consequen
we compute ITDi as the peak location of the cros
correlation function in the range 2p/v i centered at the targe
ITD, wherev i indicates the center frequency of theith chan-
nel. IIDi corresponds to the mean power ratio at the two e
expressed in decibels

IID i520 log10S (
t

r i
2~ t !Y (

t
l i
2~ t ! D , ~15!
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wherel i and r i refer to the left and right auditory peripher
output of theith channel, respectively. Note that in compu
ing IID i , we use 20 instead of 10 in order to compensate
the square-root operation in the peripheral processing st

The relative amplitude is a measure of the relat
strength between the target source and the acoustic inte
ence, defined using root-mean-square values of the orig
signals at the ‘‘better ear’’—the ear with higher SNR~see,
e.g., Shinn-Cunninghamet al., 2001!

Ri5A(
t

si
2~ t !Y SA(

t
si

2~ t !1A(
t

ni
2~ t ! D ,

~16!

wheresi refers to the response of theith gammatone filter to
the target signal andni the response to the acoustic interfe
ence~noise!.

Figure 6 shows empirical results obtained for a tw
source configuration: target source in the median plane
interference at 30°. The scatter plot in Fig. 6~A! shows
samples of ITDi andRi obtained for the channel with a cen
ter frequency of 500 Hz~about 7000 samples in total!. In

TABLE I. Speech signals of the training set.

ID Speaker ID Utterance

S0 MKLS0 ‘‘Primitive tribes have an upbeat attitude’’
S1 FCKE0 ‘‘Only the best players enjoy popularity’’
S2 MCDC0 ‘‘Our aim must be to learn as much as we teach
S3 FEAR0 ‘‘Development requires a long-term approach’’
S4 FDMS0 ‘‘Poets, moreover, dwell on human passions’’
S5 FETB0 ‘‘Change involves the displacement of form’’
S6 FCMM0 ‘‘The system works as an impersonal mechanis
S7 MJWS0 ‘‘Most assuredly ideas are invaluable’’
S8 MRVG0 ‘‘False ideas surfeit another sector of our life’’
S9 MJRH0 ‘‘But in every period it has been humanism’’
Roman et al.: Speech segregation
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FIG. 6. Relationship between ITD/IID and the relative strengthR for a
two-source configuration: target in the median plane and interference o
right side at 30°.~A! The scatter plot shows ITD andR estimates from the
training corpus for a channel with center frequency of 500 Hz. The s
curve shows the theoretical mean@see Eq.~14!# and the dash curve show
the data mean.~B! Results for IID for a filter channel with center frequenc
2.5 kHz. The solid curve shows the theoretical mean@see Eq.~15!# and the
dash curve shows the data mean.
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addition, we display the empirical mean of the samples a
the theoretical one derived in~13!. Similarly, Fig. 6~B!
shows the results that describe the variation of IIDi with Ri

for a channel with a center frequency of 2.5 kHz and co
pares the empirical mean with the one derived in~14!. Note
that Ri incorporates the HRTF responses at the better
Therefore, theR axis for the theoretical mean is converte
accordingly. Figure 6 exhibits a systematic shift of the es
mated ITD and IID with respect toR for real signals. More-
over, the theoretical means obtained in the case of pure to
match the empirical ones very well. Similar matches are
served in other frequency channels and other spatial confi
rations.

The above observation extends to multiple-distrac
scenarios. As an example, Fig. 7 displays smoothed hi
grams that show the relationship betweenRi and both ITDi

@Fig. 7~A!# and IIDi @Fig. 7~B!# for a three-source situation
Samples correspond to a frequency channel with a ce
frequency close to 1.5 kHz for target at 0°~median plane!
and two interferences at230° and 30°. Note that the inter
fering sources introduce systematic deviations of the bina
cues. Consider a particularly troubling case: the target is
lent and two interferences have equal energy in a given T
unit. This results in binaural cues indicating an audito
event at half of the distance between the two interfere
locations; for our setup, it is 0°—the target location. Ho
ever, the data in Fig. 7 suggest a low probability for this ca
Figure 7 instead shows a clustering phenomenon, sugge
that in most cases only one source dominates a T–F un

By displaying the information in the joint ITD–IID
space, we observe a location-based clustering of the bina
cues, which is clearly marked by strong peaks that co
spond to distinct active sources as shown in Fig. 7~C!. There
exists a trade-off between ITD and IID across frequenc
where ITD is most salient at low frequencies and IID at hi
frequencies. But, a fixed cutoff frequency that separates
effective use of ITD and IID does not exist for differen
spatial configurations~see Fig. 8 later!. This motivates our
choice of a joint ITD–IID feature space that optimizes t
system performance across different configurations. Dif
ential training seems necessary for different channels, gi

he

d

FIG. 7. Relationship between ITD/IID and the relative strengthR for a three-source configuration: target source in the median plane and interference at230°
and 30°. Statistics are obtained from the training corpus for a channel with center frequency close to 1.5 kHz.~A! Histogram of ITD andR samples.~B!
Histogram of IID andR samples.~C! Clustering in the ITD–IID space.
2243Roman et al.: Speech segregation
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that there exist variations of ITD and, especially, IID valu
with different center frequencies.

Since the goal is to estimate an ideal binary mask,
focus on detecting decision regions in the two-dimensio
ITD–IID feature space for individual frequency channe
Consequently, standard supervised learning techniques
be applied. For theith channel, we test the following two
hypotheses. The first one isH1 : target is dominant orRi

.0.5, and the second one isH2 : interference is dominant o
Ri<0.5. Based on estimates of the bivariate densi
p(xuH1) and p(xuH2), the classification is done in acco
dance with themaximum a posteriori~MAP! decision rule:
p(H1)p(xuH1).p(H2)p(xuH2). There exists a plethora o
techniques for probability density estimation ranging fro
parametric techniques~e.g., mixture of Gaussians! to non-
parametric ones~e.g., kernel density estimators!. We initially
tried the EM algorithm for learning Gaussian mixtures~Duda
et al., 2001!, but this did not prove to be as robust due to t
following factors:~i! the true number of mixing componen
is usually unknown, and~ii ! the algorithm tends to be sens
tive to parameter initialization. Even for the two-source s
nario, the method of computing ITD for mid- to high fre
quencies can result in two-mode distribution for theH2

hypothesis. In order to completely characterize the distri
tion of the data, we use the kernel density estimation met
independently for all frequency channels.

Kernel density estimation is well documented in the
erature~Silverman, 1986!, so we only summarize its essen
here. Generally, the multidimensional kernel density estim
for n observationsx1 ,...,xn of dimensionalityd is given by
the following formula:

f̂ ~x!5(
i 51

n
1

nh1 ...hd
)
j 51

d

KS xj2xi j

hj
D , ~17!

wherex5(x1 ,...,xd) is a feature vector,xi j is thejth element
of xi , K is a Gaussian function, andhj ’s are parameters
called bandwidths that define the amount of smoothing
the empirical distribution. In our case, the ITD–IID featu
space has dimensionalityd52. The selection of the smooth
ing parameters is critical to the success of the estima
process: for too-small values it approximates the data w
but generalizes poorly, and for too-large values the struc
of the data distribution disappears. One approach for find
optimal values is the least-squares cross-validation me
~LSCV! ~Silverman, 1986!. We employ the LSCV method
for high dimensions and the Gaussian kernel given by S
et al. ~1994! ~p. 808!. Optimal smoothing values are chose
as local minima in the range@n21/6s i /4, 3n21/6s i /2#, where
s i represents the variance of the data set in theith dimension
andn is the size of sample data set.

One cue not employed in our model is IED. Audito
models generally use IED in the high-frequency range~see,
for example, Bodden, 1993!, since the auditory system be
comes gradually insensitive to interaural phase differen
above 1.5 kHz. In addition, the occurrence of multiple pea
at high frequencies in the cross-correlation function is mu
reduced for the IED cue. We have compared the individ
performance of the three binaural cues: ITD, IID, and IE
for a one-dimensional classification task based on the ke
2244 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
e
l

.
an

s

-

-
d

te

r

n
ll
re
g

od

in

s
s
h
l

,
el

density estimation method presented above. An error is m
whenever the estimated binary mask value for a T–F u
differs from the corresponding ideal value. Figure 8 sho
the error rates with respect to frequency channel using
Cooke corpus~see Sec. VI A! as the test set, where we con
sider two cases: target source in the median plane and
acoustic interference at 5°@Fig. 8~A!# and 30°@Fig. 8~B!#.
IED results are given for the frequency range of interes
above 1.5 kHz~i.e., channel number.80!. As the source
separation increases, error rates for IED and IID improve.
the other hand, ITD loses discriminability for high-frequen
channels where the multiple-peak problem results in
same ITD for both target and interference@Fig. 8~B!#. Figure
8 also displays the corresponding error rates for the jo
ITD–IID space and the joint IED–IID space, and it show
that the joint ITD–IID space yields the best overall perfo
mance across different spatial configurations. As indicate
Fig. 8, we have found no benefit for using IED after inco
porating ITD and IID, and hence it is not utilized in ou
model.

VI. EVALUATION AND COMPARISON

A binary mask produced by the model described in
last section approximates very well the corresponding id
binary mask, which is obtained by comparing the energies

FIG. 8. Discriminability comparison for the three binaural cues, ITD, II
and IED, the joint IED–IID space, and the joint ITD–IID space. Error ra
are displayed as a function of channel number~frequency! for a classifica-
tion task for two spatial configurations.~A! Target source in the median
plane and interference on the right side at 5°.~B! Target source in the
median plane and interference on the right side at 30°. IED results
shown for frequencies above 1.5 kHz, i.e., above channel number 80.
Roman et al.: Speech segregation
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the original target and interference before mixing. As an
ample, Fig. 9 shows a comparison between the ideal bin
mask and the estimated mask for a mixture of target m
speech presented at 0° and interference female speech a
at the better ear. In the figure, a blank pixel indicates a T
unit in which the target dominates. The two masks are v
similar, with an SNR difference of only 0.19 dB.

The performance of a segregation system can be
sessed in different ways, depending on intended applicati
To extensively evaluate our model, we use the followi
three criteria:~1! an SNR measure using the original target
signal;~2! ASR rates using our model as a front end; and~3!
human speech intelligibility tests. Results with each criter
are given below.

A. SNR evaluation

To conduct an SNR evaluation, a segregated signa
reconstructed from a binary mask following the method
scribed in Sec. II. To quantitatively assess system per
mance, we measure in decibels the SNR using the orig
target speech before mixing as signal

SNR510 log10(
t

sT
2~ t !Y (

t
~sT~ t !2sE~ t !!2, ~18!

where sT(t) represents the original target signal reco
structed using an all-one mask andsE(t) the estimated targe
reconstructed from the binary mask. With a binary mask
more conventional SNR measure would use the mask to

FIG. 9. A comparison between an ideal binary mask~A! and the binary
mask resulting from our model~B! for a mixture of male utterance in the
median plane~target! and female utterance on the right side at 30°~interfer-
ence!. The black regions indicate those T–F units dominated by ta
speech.
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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through original target and intrusion in order to obtain sign
and noise, as done by Wang and Brown~1999!. The problem
with such a measure is that loss of target energy is not
nalized, and as a result a separate measure of retained t
energy needs to be given~Wang and Brown, 1999!. Equation
~18! provides a single measure, and in the case of an all-
mask yields the original SNR. Though the signal part in~18!
is higher than that retained by a binary mask, it is offset
the denominator that is also higher than retained noise
ergy; the denominator penalizes both retained noise by
binary mask and target distortion. Our measure is more st
gent than the conventional SNR measure; indeed, our t
show that~18! gives systematically lower SNR values. T
minimize the loss of target energy we take advantage of
higher initial SNR at the better ear. As a result, the rec
structed signal corresponding to the better ear contains m
target energy. Therefore, all the following evaluations a
performed at the better ear.

The system performance is measured on indepen
test corpora for different spatial configurations. For the tw
source scenario, one test set is the corpus collected by C
~1993!, chosen because it is commonly used in compu
tional ASA studies~Brown and Cooke, 1994; Wang an
Brown, 1999; Wuet al., 2003!. The corpus contains ten
voiced speech signals and ten noise intrusions, encompas
a variety of common acoustic interferences such as teleph
ringing, rock music, and other speech utterances. In addit
we employ a second corpus containing ten normal spe
utterances from the TIMIT database~see Table II! as target
mixed with the ten intrusions from the Cooke corpus~see
Table III!. In the case of three sources, we use the Co
corpus for testing: five speech signals form the target set
the other five form one interference source. The ten int

t

TABLE II. Target signals of the test set.

ID Speaker ID Utterance

S0 MWSB0 ‘‘Bright sunshine shimmers on the ocean’’
S1 MDCD0 ‘‘Challenge each general’s intelligence’’
S2 MDHS0 ‘‘The Thinker is a famous sculpture’’
S3 MTAA0 ‘‘Only lawyers love millionaires’’
S4 MRPC1 ‘‘Biblical scholars argue history’’
S5 FPKT0 ‘‘They make us conformists look good’’
S6 FJRE0 ‘‘Artificial intelligence is for real’’
S7 FPAC0 ‘‘A good attitude is unbeatable’’
S8 FREH0 ‘‘Too much curiosity can get you into trouble
S9 FBCH0 ‘‘Clear pronunciation is appreciated’’

TABLE III. Noise signals of the test set.

ID Utterance

N0 1-kHz tone
N1 Random noise
N2 Noise bursts
N3 ‘‘Cocktail’’ party noise
N4 Rock music
N5 Siren
N6 Telephone trill
N7 ‘‘Don’t ask me to carry an oily rag like...’’
N8 ‘‘She had your dark suit in greasy wash...
N9 ‘‘Why were we keen to use human...’’
2245Roman et al.: Speech segregation
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sions then form the second interference source. Therefor
this three-source corpus every mixture contains two ut
ances plus an additional intrusion.

For the two-source case, the model is systematic
evaluated at the better ear for various combinations of
muth angles. We compare the SNR gain obtained by
model against that obtained using an ideal binary mask.
the test corpus of Table II, Fig. 10 shows the results fo
spatial separation of 5° and target at azimuth 0°, 40°,
80°. Results are similar across mixtures in the same n
category; hence, we present the averaged result for each
egory. Very good results are obtained when the target is c
to the median plane for an azimuth separation as small a
Performance degrades when the target source is moved t
side of the head; this is a direct consequence of poorer r
lution of the binaural cues at higher azimuth angles. Wh
comparing with the SNR of the initial mixture, there is a
average-SNR gain of 13.76 dB for the target in the med
plane, and it reduces to 5.04 dB with the target at 80°. W
the spatial separation increases, excellent results are obta
across all spatial configurations. Figure 11 shows results
target at 0°, 30°, and 60° and interference at 30° to the r
of target. Similar results are obtained for other spatial c
figurations. Figure 12 shows that the system perfor
equally well on the Cooke corpus. Figure 12~A! gives the
results for a 5° azimuth separation and the average impr
ment is 13.73 dB. Similarly, Fig. 12~B! gives the results for a
30° separation.

FIG. 10. Systematic results for two-source configuration with 5° azim
separation. Black bars correspond to the SNR of the initial mixture, w
bars indicate the SNR obtained using ideal binary mask, and gray bars
the SNR from our model. Results are obtained for speech mixed with
types of intrusions~see Table III! for different spatial configurations.~A!
Target at 0°, interference at 5°.~B! Target at 40°, interference at 45°.~C!
Target at 80°, interference at 85°.
2246 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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FIG. 11. Systematic results for two-source configuration with 30° azim
separation. Black bars correspond to SNR of the initial mixture, white b
to the SNR obtained using an ideal binary mask, and gray bars to the
from our model.~A! Target at 0°, interference at 30°.~B! Target at 30°,
interference at 60°.~C! Target at 60°, interference at 90°.

FIG. 12. Systematic results for two-source configuration using the Co
corpus as the test corpus. Black bars correspond to SNR of the initial
ture, white bars to the SNR obtained using an ideal binary mask, and
bars to the SNR from our model.~A! Target at 0°, interference at 5°.~B!
Target at 0°, interference at 30°.
Roman et al.: Speech segregation
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Our approach, like other location-based methods us
cross correlation, can be extended to cases with more
two sources. With given locations, our model performs tar
segregation in a similar manner, i.e., estimating an ideal
nary mask following the method outlined in Sec. V B. Figu
13 illustrates the performance of the model in a three-sou
scenario with target located in the median plane and
interfering sources at230° and 30°. Here, the ten noise in
trusions from the Cooke corpus are presented at 30° azim
and the target is reconstructed based on the right ear mix
As previously, results are mean values for the ten types
noise intrusion. The performance degrades compared to
corresponding two-source situation, from an average SNR
about 12 to 4.10 dB. Still, the average SNR gain obtaine
approximately 11.31 dB.

In order to draw a quantitative comparison with anoth
binaural processing model, we have implemented the B
den model~Bodden, 1993!, which produces good-quality
sound separation using source locations. The localiza
stage of this model uses an extended cross-correla
mechanism based on contralateral inhibition and it adapt
HRTFs. The separation stage of the model is based on
mation of the weights for a Wiener filter. Specifically, for
given T–F unit the weight is given by the ratio between
desired excitation and an actual one. The actual excita
corresponds to the integration of the cross-correlation pat
across the azimuth axis, and the ideal peak shape is used
window to derive the desired excitation. The Bodden mo
differs from ours in several aspects. First, his sound local
tion stage builds on the previous models of Lindema
~1986! and Gaik~1993!, which simulate aspects of the pre
cedence effect for reverberant scenarios, whereas our lo
ization stage is simpler and does not address the preced
effect. Second, his model requires only a target azimuth
no training is necessary as spatial configuration changes
though these aspects add to the flexibility of his model,
estimation of Wiener filter weights appears less robust t
our binary estimation of ideal masks. In addition, o
configuration- and channel-specific training utilizes more

FIG. 13. Evaluation for a three-source configuration. The target is in
median plane and intrusions are at230° and 30°. Black bars correspond
the SNR of the initial mixture, white bars to the SNR obtained using id
binary mask, and gray bars to the SNR from our model.
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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formation provided by localization and makes an optimal u
of frequency-dependent ITD and IID cues.

Bodden’s system uses a 24-channel filterbank inten
to simulate critical bands. For a fair comparison, our imp
mentation of the Bodden system uses the same tim
frequency resolution employed in our system with a 12
channel gammatone filterbank; we also implemented
Bodden model with 24-channel critical bands and the res
are not as good. We find that, when two sources are relati
close, the Bodden model is less robust than ours. Our c
parison is based on the Cooke corpus and a spatial con
ration of target at 0° and intrusion on the right side at 30°,
azimuth separation in the range where his model perfo
optimally. As displayed in Fig. 14, our model shows a co
siderable improvement over the Bodden system, produc
3.5-dB average improvement. The improvement is especi
high for a few cases~e.g., N5 and N6! where our estimated
masks result in large SNR improvements over the origi
mixtures.

B. ASR evaluation

As discussed before, an ideal binary mask is definea
priori . Similar a priori masks have been shown to produ
impressive performance when applied to the automatic
ognition of noisy speech using a ‘‘missing data’’ approa
~Cookeet al., 2001!. In this approach, a continuous densi
hidden Markov model recognizer is modified such that o
acoustic features indicated as reliable in the mask are u
during decoding. Since our ideal binary masks are gener
in a similar way to those used by Cookeet al., we would
expect them to be an equally effective front end to missi
data ASR.

Our motivation for ASR evaluation is twofold. First,
practical system must estimate such a mask, and as a r
deviations from an ideal mask must be considered. Hen
we want to find how tolerant recognition performance is
deviations from an ideal mask. Second, we want to giv
quantitative measure of the potential improvement on A
performance using our speech segregation model as a
end.

e

l

FIG. 14. SNR comparison between the Bodden model~white bars! and our
model~gray bars! for a two-source configuration: target in the median pla
and interference at 30°. The black bars correspond to the SNR of the o
nal mixture.
2247Roman et al.: Speech segregation
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We use the missing-data technique~Cookeet al., 2001!
for our ASR evaluation. This technique uses a binary tim
frequency mask, where 1’s indicate reliable T–F units a
0’s unreliable or missing ones. Hence, it works seamles
with the output from our speech segregation system.
have implemented the missing data algorithm with the sa
128-channel gammatone filterbank as described in Sec
Feature vectors are obtained using the instantaneous Hi
envelope at the output of each gammatone filter. More s
cifically, each feature vector is extracted by smoothing
envelope using an 8-ms first-order filter, sampling at a fra
rate of 10 ms and finally log compressing. There are differ
classification methods for missing-data recognition. Here,
use the bounded marginalization method~Cooke et al.,
2001!. As in the original study, the task domain is recog
tion of connected digits, and both training and testing
performed using the male speaker dataset in the TIDi
database~Leonard, 1984!.

To study the sensitivity of an ideal mask to estimati
error, our first test assesses the correctness score an
accuracy score~correctness minus word insertion error!
when a random deviation from an ideal binary mask is int
duced. Here, we use for simplicity a monaural condition
in Cookeet al. ~2001!. Deviations are obtained by random
flipping the same number of bits from 0’s and 1’s; the nu
ber is measured as percentage of the total number of 1’s i
ideal mask. The percentages tested are 0%, 5%, 10%, 2
and 50%. Since the underlying acoustic energy associ
with a T–F unit, or a bit, can vary in a large range, w
further measure the energy deviation ratio as the ratio of
energy corresponding to flipped bits and the total energy
responding to the ideal binary mask. The results for a m
target speaker mixed with ‘‘car noise’’~Cookeet al., 2001!
are given in Fig. 15, where the abscissa indicates the en
deviation ratio. Three SNR levels for the mixture, i.e.,25, 0,
and 5 dB, are tested. Figure 15~A! give the correctness scor
and Fig. 15~B! the accuracy score. Figure 15 shows that b
correctness score and accuracy score decrease graduall
systematically as deviation ratio increases. This suggests
ideal binary masks are robust to estimation error. A comp
son between Fig. 15~A! and Fig. 15~B! shows that the accu
racy score degrades faster than the correctness score.
suggests that word insertions, which result from noise re
tion or word boundary blurring, are more sensitive to estim
tion error than recognition of present words.

The second test directly evaluates binary masks e
mated by our system for binaural conditions with tw
sources and three sources. For all tests, the same male
speaker is located at 0°. Both training and testing of
system are performed on acoustic features from the left
signal ~see Fig. 1!. Figure 16~A! and Fig. 16~B! show the
correctness and accuracy scores for a two-source condi
where the interference is another male speaker at 30°.
performance of our model is compared against the id
masks systematically for four SNR levels, i.e., 5, 0,25, and
210 dB. Also shown in the figure is the baseline perf
mance where the recognition is conducted on unproce
mixtures from the left ear. Similarly, Fig. 16~C! and Fig.
16~D! show the results for the three-source case with
2248 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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added female speaker at230°. The results in Fig. 16 show
that an ideal binary mask exhibits only slight and grad
degradation in recognition performance with decreas
SNR and increasing number of sources. In the two-sou
case, the estimated masks perform equally well as the i
masks. In the three-source case, the estimated masks d
perform as well, and this is to be expected since we kn
from Sec. VI A that the quality of ideal mask estimation f
three sources is not as good as for two sources. Consis
with the observations from Fig. 15, performance degra
more quickly for the accuracy score than for the correctn
score. Observe that large improvements over baseline pe
mance are obtained across all conditions~to a lesser degree
for the accuracy score in the three-speaker condition!. This
shows the strong potential of applying our model to rob
speech recognition.

C. Speech intelligibility evaluation

Finally, we evaluate our model on speech intelligibili
with human listeners. Before reporting the results, we sho
point out that human listeners have a remarkable ability
perform ASA, and their superior ability to recognize spee
in the presence of acoustic interference is the very mot
tion for our model design. Because of this, our tests focus
relatively low SNR conditions; otherwise, scores will be i
discriminately high for both unprocessed mixtures and s
regated speech.

We use the Bamford–Kowal–Bench sentence datab
that contains short semantically predictable sentences~Bench
and Bamford, 1979! for intelligibility tests. The score is
evaluated as the percentage of keywords correctly identifi

FIG. 15. Degradation of recognition score with deviations from an id
binary mask evaluated for three SNR values: 5 dB~square!, 0 dB ~circle!,
and25 dB ~diamond!. ~A! Correctness score.~B! Accuracy score.
Roman et al.: Speech segregation
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FIG. 16. Recognition performance a
different SNR values for original mix-
ture ~dotted line!, ideal binary mask
~solid line!, and estimated mask
~dashed line!. ~A! Correctness score
for a two-source case.~B! Accuracy
score for a two-source case.~C! Cor-
rectness score for a three-source ca
~D! Accuracy score for a three-sourc
case.
e
d

et
on
a
e

t
a

be
Th

25
m
e
h

w

Each
on
first
ed.

sen-
is

m-
he

et
ns
ves
ely
ree-
m-

nd a
pa-

e

ignoring minor errors such as tense and plurality~Stubbs and
Summerfield, 1990!. Two different spatial configurations ar
considered: a two-source configuration at 0° and 5°, an
three-source configuration at230°, 0°, and 30°. To eliminate
potential location-based priming effects~Maljkovic and Na-
kayama, 1996! we randomly swap the locations for targ
and interference for different trials. In the unprocessed c
dition, binaural signals are produced by convolving origin
signals with the corresponding HRTFs and the convolv
signals are presented to a listener dichotically~see Bodden,
1993!. In the processed condition, our algorithm is used
reconstruct the target signal at the better ear and results
presented diotically.

Twelve native English speakers with normal hearing,
tween 24–30 years old, participated in the experiments.
tests were conducted in a sound-insulating booth~IAC model
40a-9! and signals were presented over Sennheiser HD
headphones. At the beginning of a test, subjects were fa
iarized with the voice of a target male speaker and they w
free to adjust the sound volume to a comfortable level. T
task of a subject during each test run was to report what

FIG. 17. Keyword intelligibility score~median values and interquartil
ranges! before ~white bars! and after processing~black bars! for a two-
source condition~0° and 5°! at three SNR values: 0,25, and210 dB.
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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comprehended and a human operator marked the result.
listener participated in a total of 8 conditions. Each conditi
contained 25 new, randomly chosen sentences, with the
5 sentences used for practice only and their data discard

Figure 17 gives the keyword intelligibility score~median
values and interquartile ranges! for the two-source configu-
ration. Three SNR level are tested: 0,25, and 210 dB,
where the SNR is computed at the better ear for each
tence. The interfering source used for this configuration
babble noise. The general finding is that our algorithm i
proves the intelligibility score for the tested conditions. T
improvement becomes larger as the SNR decreases~61% at
210 dB!, even though the algorithm introduces more targ
distortions at lower SNR levels. Our informal observatio
suggest, as expected, that the intelligibility score impro
for unprocessed mixtures when two sources are more wid
separated than 5°. Figure 18 shows the results for the th
source configuration, where our model yields a 40% i
provement. Here, the SNR is fixed at210 dB at the better
ear. The two interfering sources are one female speaker a
different male speaker. Note that, in this case, azimuth se

FIG. 18. Keyword intelligibility score~median values and interquartile
ranges! before ~white bars! and after processing~black bars! for a three-
source condition~0°, 30°, and230°! at 210-dB SNR.
2249Roman et al.: Speech segregation
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ration is high between the three sources. Though we have
formally tested in the three-source configuration, we wo
expect that a trend similar to the one in Fig. 17 occurs w
respect to SNR levels; that is, the model improvement
creases as SNR increases.

We recognize that comprehensive human subject ev
ations of a model would require a separate study~e.g., see
Stubbs and Summerfield, 1990!, and indeed this is a topic w
intend to pursue in the future. Nonetheless, as far as
know, our system is the first binaural model that has b
shown to produce a large speech intelligibility improveme
for normal listeners~see Kollmeier and Koch, 1994; Sham
soddini and Denbigh, 2001!. The configurations and SNR
conditions under which improvement occurs will be syste
atically characterized in future investigation.

VII. DISCUSSION

The human auditory system is capable of adapting t
variety of acoustical situations. A key feature of our mode
the introduction of supervised learning for different spat
configurations, and training is conducted independently
different frequency channels. We assume that such train
takes place before performing specific segregation tasks,
it would correspond to learning during the developme
stage. Supervised signals for a spatial configuration of ta
and intrusion could be supplied in a number of ways, inclu
ing sound localization, signal estimation from a specific
cation, and even information extracted from a different m
dality ~e.g., vision!. It is worth emphasizing that, unlike
typical supervised learning situation, the training here d
not need to capture the specific contents of training sign
As a result the model can be trained equally well using ot
natural sounds, and estimated distributions generalize
broad range. In an earlier study~Romanet al., 2002!, for
example, we employed a different training methodology a
a different training corpus, but the system performance w
very similar.

While satisfying the demands of an effective compu
tional system, our model is motivated by physiological a
psychoacoustical findings regarding the extraction of spa
features~Pattersonet al., 1988!. The peripheral processing i
based on a gammatone filterbank, which has a foundatio
physiology and psychoacoustics. Similarly, the cro
correlation mechanism for ITD extraction as well as t
across-frequency integration for localization are suppor
by related physiological findings~Popper and Fay, 1992!.

An open question concerns the role of spatial location
perceptual separation of competing sounds. The experim
by Culling and Summerfield~1995!, using simulated vowels
in which the formants were defined by noise bands, show
that simultaneous grouping across frequencies based on
is weak. Later experiments by Darwin and Hukin~1997,
1999! found that ITD plays a weak role in concurrent sou
segregation, but a much stronger role in linking acous
events from a common location over time. The recent exp
ments of Freymanet al. ~2001! further showed a sizable im
provement in recognizing target speech in the presenc
one or two competing speakers based on perceived sp
separation, which suggests a location-based grouping me
2250 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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nism. Our computational results demonstrate that compu
locations can play an effective role in across-frequen
grouping. On the other hand, many monaural cues are
important for sound source segregation~see the Introduc-
tion!, and how to incorporate both monaural and binau
cues in a comprehensive system remains a challenge.

Our approach uses characteristic clustering of the jo
ITD–IID space in order to accurately estimate an ideal
nary mask. Related models for estimating target ma
through clustering have been proposed previously~Tessier
and Berthommier, 1997; Lehn, 1997; Glotinet al., 1999,
Jourjine et al., 2000!. Notably, the experimental results b
Jourjine et al. ~2000! suggest that speech signals in
multiple-speaker condition obey to a large extent disjoint
thogonality in time and frequency. That is, at most o
source has a nonzero energy at a specific time and freque
Such models, however, assume input directly from mic
phone recordings and head-related filtering is not conside
Simulation of human binaural hearing introduces differe
constraints as well as clues to the problem. First, both I
and IID should be utilized, since IID is more reliable fo
higher frequencies than ITD. Second, frequency-depend
combinations of ITD and IID arise naturally for a fixed sp
tial configuration. Consequently, channel-dependent train
for each frequency band becomes necessary. Our tests
just ITD ~as in Glotinet al.! or channel-independent class
fication ~as in Jourjineet al.! yield considerably inferior per-
formance.

As illustrated in Fig. 13, the proposed model can be u
to extract target speech from an acoustic mixture that c
tains more than one intrusion. Although segregation res
are expected to drop as the number of sources increases
property of our model differs from blind source separati
using independent component analysis~Hyväarinen et al.,
2001! or spatial filtering using sensor arrays~Krim and
Viberg, 1996!; such techniques require that the number
sensors increases as the number of acoustic source
creases. A main reason for this difference is that consid
ations of human audition play a large role in our model d
sign.

Conventional two-microphone adaptive beamform
can develop one deep null which cancels almost perfe
one interference under optimal conditions~Greenberg and
Zurek, 2001!. The performance, however, degrades when
number of interfering sources increases and is largely
fected by the relative SNR of the individual interferences
the reference channel. Weiss~1987! measured the attenuatio
of individual interferences in acoustical mixtures across d
ferent conditions. The experimental results in the anech
case show attenuation up to 14.5 dB in the two-source c
when both target and interference are active during filter
aptation. For the three-source case, the performance deg
across all interferences by 4 dB, and improvement can b
low as 0 dB. In comparison, our model works for a wid
range of spatial configurations with two or more sources;
example, Fig. 13 shows that with three sources our mo
still obtains an average SNR gain of 11.3 dB. Conditio
with high SNRs degrade the performance of adaptive be
forming. Our model, on the other hand, works especia
Roman et al.: Speech segregation
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well for high-SNR scenarios. Subband versions of adap
beamforming also exist~see, for example, Nordholmet al.,
2003!. In this case, the signal is analyzed independently
frequency bands, and different directivity patterns are ad
tively chosen in each band. This allows cancellation of m
tiple interferences with nonoverlapping spectra~Cezanne and
Pong, 1995!. Conventional adaptive beamformers with slo
adaptation rate are unable to track fast spectral changes
multispeaker scenario, resulting in suboptimal performan
Using a frame-by-frame multisource localization schem
Liu et al. ~2001! have proposed an equalization and canc
lation system that has virtually zero adaptation time. Th
two-microphone system exploits the location information
each frame and steers a different null in each freque
band, resulting in 6–7 dB gain in multispeaker scenar
Our model uses a similar strategy, by employing the loc
ization cue independently in each T–F unit in order to can
simultaneous interferences. Hence, binaural processing m
els including ours may have advantages over adaptive be
formers in a range of acoustical situations.

In terms of limitations, our model currently does n
address room reverberation or moving sound sources.
serve that supervised training is required for different spa
configurations. This limits the flexibility of our system t
cope with, say, diffuse background noise. In addition,
localization of many sources in reverberant conditions w
just two sensors is a challenging topic. The situation
comes more complex when source motion is conside
Some tracking mechanism based on measurements of b
ral cues across frequency channels, combined with cha
selection to discard unreliable T–F units, could be emplo
to estimate the locations of active sources. For voic
sources, periodicity may provide a measure for the reliabi
of T–F units~see Wuet al., 2003!. Spatial and pitch infor-
mation have both been utilized to simulate double-vowel r
ognition, showing added benefits for voiced stimuli~Lehn,
1997; Tessier and Berthommier, 1997!. Other auditory
mechanisms, such as the precedence effect and forw
backward masking, could also provide important cues
cope with reverberation. Our model also does not add
how to define a target in a multisource situation; to addr
this issue would inevitably require some high-level proces
such as attention and task specification. We plan to inve
gate these and other related issues in future work.

To conclude, we have proposed a model for speech
regation based on spatial location. We have observed sys
atic deviations of the ITD and IID cues from the referen
ones with respect to the relative strength between target
acoustic interference, and configuration-specific clusterin
the joint ITD–IID feature space. Consequently, supervis
learning of binaural patterns is employed for individual fr
quency channels and different spatial configurations. Fina
the system estimates a binary mask in order to elimin
acoustic energy in time–frequency units where interfere
is stronger than target. Our model has been systematic
evaluated using both SNR and ASR measures. Evalua
results show that the system estimates ideal binary m
very well and performance degradation is gradual with
creasing number and intensity of interferences. In addit
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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when tested with normal listeners, the model produces la
speech intelligibility improvements for two-source and thre
source conditions.
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