Speech segregation based on sound localization
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At a cocktail party, one can selectively attend to a single voice and filter out all the other acoustical
interferences. How to simulate this perceptual ability remains a great challenge. This paper
describes a novel, supervised learning approach to speech segregation, in which a target speech
signal is separated from interfering sounds using spatial localization cues: interaural time differences
(ITD) and interaural intensity differencédD). Motivated by the auditory masking effect, the
notion of an “ideal” time—frequency binary mask is suggested, which selects the target if it is
stronger than the interference in a local time—frequeficyF) unit. It is observed that within a
narrow frequency band, modifications to the relative strength of the target source with respect to the
interference trigger systematic changes for estimated ITD and IID. For a given spatial configuration,
this interaction produces characteristic clustering in the binaural feature space. Consequently,
pattern classification is performed in order to estimate ideal binary masks. A systematic evaluation
in terms of signal-to-noise ratio as well as automatic speech recognition performance shows that the
resulting system produces masks very close to ideal binary ones. A quantitative comparison shows
that the model yields significant improvement in performance over an existing approach.
Furthermore, under certain conditions the model produces large speech intelligibility improvements
with normal listeners. ©€2003 Acoustical Society of AmericdDOI: 10.1121/1.1610463

PACS numbers: 43.72.Ew, 43.66.Ba, 43.66][Q©@S]

I. INTRODUCTION binaural cues has implications for both localization and rec-
ognition tasks. Headphone experiments show that listeners
The perceptual ability to detect, discriminate, and recogcan reliably detect 10—1&s ITDs from the median plane,
nize one utterance in a background of acoustic interferencehich correspond to a difference in azimuth of between 1
has been studied extensively under both monaural and birand 5 deg. On the other hand, the smallest detectable change
aural conditiongBregman, 1990; Blauert, 1997; Bronkhorst, in 1ID by the human auditory system is about 0.5 to 1 dB at
2000. The human auditory system is able to segregate all frequencies. Resolution deteriorates as the reference ITD
speech signal from an acoustic mixture using various cuegyets larger, and the difference limen can be as much as 10
including fundamental frequencyQ), onset time and loca- deg when the ITD corresponds to a source located far to the
tion, in a process that is known asiditory scene analysis side of the headBlauert, 1997.
(ASA) (Bregman, 1990 FO is widely used in computational Classical models for processing binaural cues compare
ASA systems that operate upon monaural input—howevelthe acoustic signals at the two ears, although they explain the
systems that employ only this cue are limited to voicedbinaural interaction through different mechanisms. These in-
speech(Brown and Cooke, 1994; Wang and Brown, 1899 clude extensions of the Jeffress coincidence médfress,
On the other hand, localizatidibinaura) cues have the ad- 1948; Lindemann, 1986; Gaik, 1993he equalization and
vantage of being generally independent of the signal contertancellation(EC) theory (Durlach, 1972; Breebaawt al,,
and can be used to track a sequence of voiced and unvoic&®01), and auditory-nerve-based modei€olburn, 1977;
components that originates from the same location in spac&tern and Colburn, 1978The goal of this line of research is
It is widely acknowledged that for human audition, in- to explain experimental data for a number of psychoacousti-
teraural time differencefTD) are the main localization cue cal phenomena including lateralization, binaural masking
used at low frequencie&<1.5 kH2), whereas in the high- levels, and the precedence efféftir a review see Stern and
frequency range both interaural intensity differen¢e®)  Trahiotis, 1995.
and interaural time differences between the envelopes of the Increased speech intelligibility in binaural listening
signals(IED) are usedBlauert, 1997. The resolution of the compared to the monaural case has also prompted research in
designing cocktail-party processors based on psychoacoustic
a . o principles (Lyon, 1983; Slatky, 1993; Bodden, 1993; Liu
bE:Zggg?]:E 22:', E&ﬁggﬁﬂ'ﬁ;ﬁﬁﬁ;ﬂf’wu et al, 2001; Whittkop and Hohmann, 2003Viost cocktail-
®Electronic mail: g.brown@dcs.shef.ac.uk party-processor designs utilize the following observation: as
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FIG. 1. Schematic diagram of the model. Binaural signals are obtained by convolving input signals with measured head related impuls¢H&3ponses
from a KEMAR dummy head. A model of the auditory periphery is employed. Azimuth localization for all the sources is based on a cross-correlation
mechanism. ITD and IID are computed independently for different frequency channels. A pattern analysis block produces an estimation of aryideal bina
mask, which enables the reconstruction of the target signal and the interfering sound.

the relative strength of the interference with respect to thestrength of sources and the pattern of binaural cues are at the
target increases, certain attributes of the auditory event incore of our system. We show for mixtures of multiple sound
cluding location and spatial extent change systematicallpources that there exists a strong correlation between the
compared to the case of the target source alone. In particulaglative strength of target and interference and estimated
building on a previous cross-correlation model for sound lo-TD/IID, resulting in a characteristic clustering across fre-
calization, Bodden(1993 proposed a model that estimates quency bands. Our aim is to maximize the performance of
optimal time-varying Wiener coefficients for all critical the system independently for different spatial configurations.
bands by comparing desired cross-correlation patterns to olionsequently, we employ a nonparametric classification
served ones. Bodden’s model has shown that psychoacoustirethod to determine decision regions in the ITD-IID feature
cally motivated auditory mechanisms can produce substarspace that correspond to an optimal estimate for an ideal
tial enhancement in speech intelligibiliiBodden, 1995 mask. An objective evaluation of the system with both SNR
In this study, we propose a sound segregation mode(signal-to-noise ratipand ASR (automatic speech recogni-
using binaural cues extracted from the responses of a KHBion) measures shows that the results of our system are com-
MAR dummy head that realistically simulates the filtering parable with those obtained using ideal binary masks. In ad-
process of the head, torso, and external @rkhard and dition, a speech intelligibility evaluation using normal
Sachs, 1976 Such a model can be applied to, among othellisteners shows a large improvement under certain condi-
things, enhancing speech recognition in noisy environmentgons.
and improving binaural hearing aid design. A typical ap- The rest of the paper is organized as follows: the next
proach for signal reconstruction uses a time—frequencgection contains an overview of the model. Section Il de-
(T—F) mask: T—F units are weighted selectively in order toscribes the peripheral auditory model. Section IV describes
enhance the target signal. Here, we introduce the notion of aihe azimuth localization algorithm. Section V is mainly de-
ideal binary mask, which is defineal priori as follows. An  voted to the ideal binary mask estimation, which constitutes
element in the mask is 1 if the corresponding T—F unit conthe core of the model. Section VI presents the evaluation
tains target energy that is stronger than interference energgesults of the system and a quantitative comparison with the
and 0 otherwise. When target and intrusion are available beBodden model. In the last section we give further discussions
fore mixing, as is the case during our evaluation, ideal binanand future directions.
masks can be readily constructed. We call such a ricesM
because its construction requires the knowledge of individual
sound sources before mixing. In addition, from a theoretica
ASA perspective, an ideal binary mask gives a performance  Our model consists of the following four stagds) a
ceiling for all binary masks. Note that an ideal mask remainsnodel of the auditory periphery2) binaural cue extraction
well-defined for situations when more than one target needand azimuth localization for both target and interference
to be segregated. The ideal mask notion is motivated by thbased on a cross-correlation mechaniéestimation of an
human auditory masking phenomenon, in which a strongeideal binary mask; an@) reconstruction of the target signal.
signal masks a weaker one in the same critical bdhabre,  Figure 1 illustrates the model architecture for the case of two
1997. Moreover, such masks generate high-quality reconsound sources.
struction for a variety of signals, and have been recently = The input to our model is a mixture of two or more
shown to provide a highly effective front end for robust signals at different, but fixed, locations: target speech and
speech recognitiofCookeet al., 2001). Furthermore, as will acoustic interference. Measurements of head-related transfer
be shown later, deviations from ideal binary masks lead tdunctions(HRTF) are a standard method for realistic binaural
gradual degradation in speech recognition performancesynthesis. We utilize here a catalog of HRTF measurements
Hence, our model aims to estimate an ideal binary maskollected by Gardner and Martifi994 from a KEMAR
using information about the spatial configuration of sounddummy head under anechoic conditions. The measurements
sources. consist of left/right KEMAR responses from a distance of
Statistics for the relationship between the relativel.4 m in the horizontal plane, resulting in 128 point impulse

I. MODEL ARCHITECTURE
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responses at a sampling rate of 44.1 kHz. Binaural signalsiple as that described by Weintrait986 (see also Brown
are obtained by filtering monaural signals with HRTFs cor-and Cooke, 1994 The target signal is reconstructed from the
responding to the direction of incidence. The responses toutput of the gammatone filterbank. To remove across-
multiple sources are added at each ear. HRTFs introduce @annel phase differences, the output of a filter is time re-
natural combination of ITD and IID into the signals that is versed, passed through the gammatone filter, and time re-
extracted by subsequent stages of our model. versed again. Furthermore, the output for each filter is
The auditory periphery is simulated using a filterbankdivided in 20-ms sections with 10-ms overlap that corre-
that models the cochlear filtering mechanism. In addition, thespond to T—F units in the binary mask, and windowed with a
gains of the filters are adjusted to account for middle-earaised cosine. Binary weights estimated in the previous stage
transfer, which is direction independent. The output of eactare then applied to each section to remove the interference.
filter is processed using a simple model for hair-cell trans-This method achieves high-quality reconstructiOfein-
duction, which performs half-wave rectification and squaretraub, 1986; Brown and Cooke, 1994; Wang and Brown,
root compression. The output of the model gives a firing ratel999.
representation of auditory-nerve activity.
Simulated auditory-nerve responses from both ears arg|. AUDITORY PERIPHERY
evaluated independently for all frequency bands in order to o .
extract interaural differences. The most common method to 't IS Widely acknowledged that cochlear filtering can be
determine ITD is cross correlation of the corresponding leffodeled by a bank of bandpass filters. The filterbank em-
and right signals within individual frequency bands, which isPl0yed here consists of 128 fourth-order gammatone filters

calculated for time lags equally distributed in the plausible(Pattersonetal, 1988 following an implementation by
range. Our localization stage uses only ITD information.COOke(1993' The impulse response of thih filter has the

Consequently, the system cannot tell front from back. we©llowing form:

restrict our model to the half-horizontal plane with azimuth t3 exp( — 27bit)cog 27 t+ ¢b)), if t=0,
in the rangg —90°,909. Due to some diffraction effects, a gi(t)= :

. X 0, otherwise
frequency-dependent nonlinear transformation from the (1)

time-lag axis to the azimuth axis is necessary. The set of ) ]
cross correlations for all frequency bands and at all time&/hereb; is the decay rate of the impulse response, related to

results in a 3D structure called the “cross-correlogram,”the bandwidth of the filterf; is the center frequency of the
where the coordinates are given by frequency, azimuth, timdilter, and ; is the phaséhere, we set; to zero. _

A cross-correlogram is further evaluated to extract spatial 1he equivalent rectangular bandwidBRB) scale is a
information. Assuming fixed sources, the source location®Sychoacoustic measure of auditory filter bandwidth. The
are obtained as the positions of the maxima in a poole§€nter frequencies; are equally distributed on the ERB
cross-correlogranShackeltoret al, 1992—obtained by in- gcale between 80 Hz gnd 5 kHz,_ and specmcally for each
tegrating the cross-correlogram across time and frequenci)lter we set the bandwidth according to the following equa-
Further stages of our model use this spatial information: th

number of sources, their locations, and the target source lo- ERB(f;)=24.74.37,/1000+ 1), (2
cation.

At the core of our system are decision rules that deter- bi=1.019 ERET;). )
mine whether the target source is stronger than the interfer-  Since the HRTF reflects the filtering effects due to pinna
ence in individual T—F units. The system is based on oband meatus but not the middle ear, we adjust the gains of the
served characteristic clustering of extracted ITD and lIDgammatone filters in order to simulate the middle-ear trans-
features. The novelty of our approach lies in the introductiorfer function; such data are provided by Moatal. (1997).
of supervised learning for different spatial configurations andAVe include this middle-ear processing for the purpose of
across all frequency bands in a joint ITD—-IID feature spacephysiological plausibility. In the final step of the peripheral
For a given frequency channel and a stimulus configurationmodel, the output of each gammatone filter is half-wave rec-
conditional probabilities are estimated from samples of ITD tified in order to simulate firing rates of the auditory nerve.
[ID, and the corresponding relative strength based on a cotSaturation effects are modeled by taking the square root of
pus of training data. Therefore, auditory grouping is imple-the rectified signal.
mented based on proximity in the ITD-I1ID space. The out- Psychophysical models for sound localization generally
put of this pattern analysis is a time—frequency mask, whickemploy envelopes of the responses in the high-frequency
is an estimate of an ideal binary mask. The time—frequencyange. This is supported by discrimination experiments using
resolution for the current implementation is 20-ms timetransposed stimuli, suggesting similar sensitivity to ITD for
frames with a 10-ms frame shifsee, e.g., Wang and Brown, both low- and high-frequency rangéBernstein and Trahi-
1999, and 128 frequency channels that cover the range of 80tis, 200). Therefore, we additionally extract the envelopes
Hz to 5 kHz. using the Hilbert transform for channels with center frequen-

The last stage of the model is a reconstruction pathcies above 1.5 kHz. Note that the envelope is not actually
which allows the target signal to be recovered from theused in our current implementation; rather, it is used in Sec.
acoustic mixture by nullifying the T—F units dominated by V as part of a comparison of the effectiveness of different
interference. The method employed here is the same in pririnteraural cues.

ions (Glasberg and Moore, 1980
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FIG. 2. Functions relating azimuth to ITD for three auditory channels with
center frequencies of 500 Hz, 1 kHz, and 3 kHz.

B

IV. AZIMUTH LOCALIZATION 5000-

Current models of azimuth localization almost invari-  __
ably employ cross correlation, which is functionally equiva- &
lent to the coincidence detection mechanism proposed by g
Jeffresg(1948. Cross correlation provides excellent time de- %
lay estimation for broadband stimuli, and for narrow band 2
stimuli in the low-frequency range. However, for high-
frequency narrow band signals it produces multiple ambigu-

ous peaks. Here, we use the normalized cross correlation
computed at lags equally distributed froril to 1 ms(—44
<7<44) using a rectangular integration window of 20 ms
(corresponding t& =880 samples The cross correlation is
computed for all frequency channels and updated every 10
ms, according to the following formula for frequency chan-
neli, time framej, and lag:

C(i.j,7)

o

Ske (=K =1)(ri(j—k=7)=T)
VG- - 102V — k=) —T7)?

4
wherel;, r; refer to the left and right auditory periphery
output of theith channel, andi , r; refer to their mean values
estimated over the integration window. Y

For each frequency channel, ITD is estimated as the lag Azimuth
corresponding to the position of the maximum in the CrOSSE|G, 3. Azimuth localization for a mixture of male utterance at 0° and

correlation function. Diffraction effects introduce weak fre- female utterance at 20°. The bottom plot in each panel shows a summation

guency dependences for ITMacPherson, 1991As a re-  across all rows(A) Cross-correlation functions for 128 frequency channels

sult we derive frequency-dependent ncm“nearin the range 80 Hz-5 kHz at time frame d., 400 ms after the start of the
’ f . he ti del . h . stimulug. For clarity, only every other channel is shown, resulting in 64
transformations to map tne time-aelay axis onto the aZ|mUt|3hannels(B) Skeleton cross-correlogram for the same time frame. The ar-

axis, resulting in a cross-correlogra@di,j,¢), wherep de-  row indicates channels that contain roughly equal energy from both target

notes azimuth. The mappings are obtained based on tead interference(C) Pooled cross-correlogram for a stimulus of duration

cross-correlation output in response to white noise presented?® S Shown every 20 ms.

systematically at locations in the azimuth rarige90°,909.

Figure 2 shows three ITD-azimuth mappings, for channeldocal peak generates an impulse of the same height and then

with center frequencies of 500 Hz, 1 kHz, and 3 kHz. Thethe obtained impulse train is convolved with a Gaussian.

functions are monotonic, being sigmoidal at low frequenciedHere, the width is linear with respect to the center frequency

where diffraction effects are greater and increasingly lineaof the channel. This technique sharpens the cross-

at high frequencies. correlogram, an effect similar to a lateral inhibition mecha-
In addition, a “skeleton”S(i,j,¢) is formed by replac- nism (Arbib, 2003.

ing the peaks in the cross-correlogram with Gaussians whose The cross-correlation method provides inconsistent re-

widths are narrower than the original peaks. That is, eaclsults when two acoustic sources are present. Figure 3 shows
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the cross-correlation functio$ig. 3(A)] and the skeleton similar trend holds for a variety of natural signals when ana-
cross-correlograniFig. 3(B)] for a mixture of male speech lyzed in narrow frequency bands. This analysis also serves to
presented at 0° and female speech presented at 20°. Here, thetivate the introduction of our proposed algorithm for the
width of the Gaussians in the skeleton cross-correlograngeneral case in subsection B.
ranges from 4° at the low-frequency end to 2° at the high—A P

A. Pure tones
frequency end. For frequency channels where one source is
much stronger, activity is observed near the true location of We consider a simple model of two sources emitting
that source. For T—F units where the two sources overlap theure tones in a narrow band. In this case, the left-ear and the
peak deviates, generally being closer to the more intenséght-ear responses are given by
source. Peaks at both locations can occur in high-frequency
channels—this ambiguity is due to the periodicity of the  ()=|Hi(@1)|A; sin(w;t)
cross-correlation function. Hence, if little overlapping occurs | .
for a sufficient number of channels a good estimate of the Ho(w2)|AzsiN(w;t+Ag),
two source locations can be obtained at every time frame by r(t)=|H (w1)|A; i t+ w,d;) (6)
pooling the cross-correlogram across all frequency channels.
At time framej and azimuthe, this yields the following +[H(02)| Az SiN(wat + wady + A g),

pooled cross-correlogram: where A, is the amplitude,w; is the frequencyd; corre-
sponds to the interaural time delégquivalent to the phase
p(j.e)=2> S(i.j,¢). (5  difference between left and right HRTFs at frequengy,
' andH!(w;) andH!(w;) represent, respectively, the right and
Improved localization results are obtained using theleft HRTF, for theith source A¢ is the sum of phase differ-
skeleton cross-correlogram proposed here over the standagices between the initial signals and those due to the arrival
cross correlation. Summing across frequencies producasimes of the signals at the left ear.
sharper peaks on the skeleton cross-correlogram; in the case To simplify, we neglect the magnitude of the HRTF re-
of Fig. 3, the skeleton cross-correlogram gives a good estisponse in analyzing ITD, which represents a reasonable as-
mate of source locations, whereas the conventional crossumption only in a narrow band low-frequency range. The
correlogram does ngtompare the bottom plots in Fig(8)  cross-correlation function for infinite-duration signals is ob-
and Fig. 3B)]. In Fig. 3C) we display the pooled cross- tained by
correlogram for a signal of duration 150 framgs., 1.5 3. 1 (T
Peaks in the pooled cross-correlogram indicate the locations  ¢(7)= lim == r(t)l(t+ 7)dt. (7)
of active sources at every frame. Assuming fixed sources, Tow2 T )1

multiple locations can be reliably determined by further sum-q,q0 e that in approximating the cross-correlation function
mating the pooled cross-corre!ogram across time as shown I} a finite duration, there exists a trade-off between the dif-
thg botrtlolm p:.Ot O_f Fig. &). This represents our method for ference in frequenclw, — w,| and the total integration time.
azimuth localization. Therefore, we study the cross correlation under the following
two conditions.

V. IDEAL MASK ESTIMATION 1. Case 1! w;=w,=w
In this case, we have

A2 2
c(7)= 5 cogw(7—d1) + 5 codw(7—dy))

The objective of this stage of the model is to develop an
efficient mechanism for estimating an ideal binary mask,
which selects the T—F units where the estimated signal en-
ergy is greater than the noise enefgg., greater than 0-dB
SNR). Note that different SNR criteria are possible for de-
fining an ideal binary masksee Cookeet al,, 200]). In the
absence of evidence for a better SNR measure, we choose do—d
the 0-dB criterion for simplicity. We propose an estimation -cos(Acerw 2_ 1)_ (8)
method based on the following observation regarding the 2
auditory interaction of multiple sources. In a narrow band, Due to the periodicity ofc(7), we study the cross-
the ITD and IID corresponding to the target source exhibitcorrelation function on a 2 interval centered atw(d;
azimuth-dependent characteristic values. As the interference d,)/2. Without loss of generality, assume that the phase
from additional sound sources increases, ITD and IID sysgifferenceswd;, wd, are in this interval; otherwise, simply
tematically shift away from these values. Consequently, in &hift the phases with multiples ofm2 To fix the discussion
local T—F unit both binaural cues can be potentially used tqet d,<d,. By observing the deviation of the peak location

determine whether the target signal dominates. Tmax from the middle of the two sourcesd{+d,)/2, we
In what follows, we analyze this phenomenon for theobtain the stronger source

case of pure tonetsee Slatky, 1993, for an extensive study

of binaural cues with sinusoidal signal#\lthough in real- Tmax> (d1+ dp)/2 A <A, ©
world scenarios the conditions of this simplified model are  This result gives a threshold to decide which source is
generally not fulfilled, our experimental results show that astronger based on ITD. Furthermore, we want to study how

d;+d,
+A1A2 COS w| 7— 2
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ITD changes with the relative strenglR=A,/(A;+A) that this is a monotonic function with respect to the relative
€[0,1]. Hence, we derive the solution fet,,, as follows: strengthR.
For the general case, we observe that as the frequencies

TmaXZM w4 andw, vary uniformly in a narrow band centeredata
2 good approximation for the mean &f,,, is given by
1 (A2—A?)sin
+— arctar{(Aqu) ;+2; A P ot p) _ dy+d, 1 . (A%—Ai)t K
cos, co Tmax= + —| arctan——=>-tang | +km |,
1 2 1M2 ¢ max 2 w (Ai*l—Ag) B
+kﬂ-) : (10 ke{0,x1}, (13

where = w[(d,—d;)/2] e[0,7] andk is an integer. The which is the solution for the maximum position (h2) when
relation obtained in(9) uniquely determine&e{0,=1} for  «,=w,. This function is monotonically increasing with re-
the 27 interval considered. More specificallf<m/2=k  spect toR when8</2 and decreasing whes> /2. Figure
=0 and g>m/2=k=1 whenA;<A,, andk=—1 when 4 shows the results when=500 Hz andB equals=/4 and
A1>A,. Furthermore, simulations and derivations show tha3s/4, respectively.

a good approximation for the mean \{aﬂﬁlax when Ag A systematic change iR also results in a corresponding
varies uniformly in the rangg—m,] is given by shift in 1ID. A similar discussion applies here. That is, the
frequency difference between the two tones affects the
d,, R<O05 S
spread of IID distribution. We do not study the case
- d;+d; R=05 = w,, since the results for IID distribution are complex and
Tmax™> ) . (13) . . .
2 not amenable to the analysis used here. In addition, 11D is
d,, R>0.5. most reliable at high frequencies where filter bandwidths are

large. Therefore, we consider the casg# w,. IID is ap-
proximated as the ratio of signal power at the two ears, re-

sulting in the following expression:
In this case, due to the orthogonality of sine waves of

2. Case 2: w;#w,

different frequencies the cross-correlation function becomes A§|H’1(wl)|2+A§|H’2(w2)|2
2 2 IID=10l0gqg , (14
Al A3 A2IH! (1) |2+ A2|HY(w,) |2
c(r)= ?Cos(wl(r—dl))-i- 7cos{w2(r—d2)). (12 A 2t ™2

A closed-form solution for the peak location in this case"/nere 1/2Elt]eT Eovx(/jer N of h a ”Ds_lgnal u(t) 'Tc‘h
does not exist. Instead, we analyze the behavior of the pe T J-ru*(t)dt. Note that IS monotonic wit

location for relatively close angles, i.e|w;d;— w,d,| resp_(l?ﬁt tobthe relatllve_strengIRJ hat the distributi £ th
<r/2. In this interval, we apply a second-order Taylor ex- e above analysis suggests that the distribution of the

pansion as an approximation for the cosine, resulting in %ln?ﬁraiclct:uesbmg gg{ﬁn_pltir cth?g_nel IS d|rectllyt|nfllufttanceéj
simple SOIUtioN:7a= (AZwld; + Adwdty)/(A2w’ + Adwd). Note Y the Tilter bandwidih. To test this, we simulate left an

right signals using Eq(6), where the relative strength is
fixed, Ag is uniformly distributed in the range-,], and
7 w1, in [o—Aw,wt+Aw]. Figures %A) and (B) show the
) mean and the variance of ITD as a function Rffor the
1 condition of w=500 Hz, 30° azimuth separation, 20-ms in-
\ tegration time, and fouAw values in the range of 0 to 200
\ Hz. In the figureM, is the ITD mean as derived ii1) and
\ it approximates well the castw=0. M, is the ITD mean
\ derived in(13) for the more general caskw#0. Similarly,
Figs. 5C) and (D) show results for 1ID whenw=2.5 kHz
\ and fiveAw values in the range of 0 to 400 Hz. Held,is
\ the IID mean as derived ifil4). It is worth noting that the
\ theoretical derivations oM, and M approximate well the
! simulation results when the bandwidth approaches the audi-
‘l tory filter ERB, which is 80 Hz for a 500-Hz center fre-
1

quency and 300 Hz for 2.5 kHz. In addition, there is a sys-
tematic decrease in variance for both ITD and IID &6
approaches the ERB. This behavior generalizes to other fre-

A | or th _ quencies as well.
FIG. 4. Theoretical approximation for the mean 1TB,,,, for two pure ; _
tones randomly distributed in a narrow band centered at 500 Hzy e To conclude, our analySIS shows that ITD and 11D un

corresponds to the relative strengthTwo cases are show= /4 (solid dergp systematic shifts frqm th'e ideal targe't values as the
line) and =34 (dashed ling relative strengttR of two sinusoidal sources is changed. A

= 0
Tmax (M)
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FIG. 5. The influence of filter bandwidth on the mean and variance of ITD and IID with respect to the relative sehigéhdata are from simulations of
two pure tones uniformly distributed in a narrow band. One tone is at 0° and the another is at 30°. The sampling frequency is @) Mddn. ITD as a
function of R for 500-Hz center frequency and four bandwidths between 0 and 200 Hz. The auditory filter ERB here isBpatelM, correspond to the
theoretical mean ITD as derived in Ed.3) and Eq.(14), respectively(B) ITD variance for the same condition as(a). (C) Mean IID as a function oR
for a 2.5-kHz center frequency and five bandwidths between 0 and 40®tdprresponds to the theoretical mean 11D as derived in(E§). The auditory
filter ERB is 300 Hz.(D) IID variance for the same condition as (G).

comparison of the above theoretical derivations with the realvherel; andr; refer to the left and right auditory periphery
data presented in the next subsection shows that the matchadsitput of theith channel, respectively. Note that in comput-
very close. ing 11D, , we use 20 instead of 10 in order to compensate for
the square-root operation in the peripheral processing stage.
B. Model . . . .
The relative amplitude is a measure of the relative
The analysis of ITD and IID for pure tones shows rela-strength between the target source and the acoustic interfer-
tively smooth changes with the relative strengm narrow  ence, defined using root-mean-square values of the original
frequency bands. In order to capture this relationship in th&ignals at the “better ear"—the ear with higher SN&ee,
context of real signals, statistics are collected for individuale.g., Shinn-Cunningharet al., 2007
spatial configurations during training. Binaural signals are

obtained by convolving with KEMAR HRTFs as explained R = /2 s?(t)/ \/2 S2(t) + \/2 n2(t)
in Sec. Il. We employ a training corpus consisting of ten ' T T T )
speech signals from the TIMIT databa&8arofolo et al, (16)

1993: five male utterances and five female utterances aﬁ/heresi refers to the response of titl gammatone filter to

presgnted in Table 1. The speaker ID in the table unlquglxhe target signal and; the response to the acoustic interfer-
identifies the speaker in the TIMIT database where the f'rsénce(noise)

letter llndltcggesstzisix ?Lthte spetake;. :ﬂ the t)[/v'o:[sofurce case, Figure 6 shows empirical results obtained for a two-
we selec - 0 be the target and the rest interierence. rce configuration: target source in the median plane and

the three-source case, we have S0—S3 as target signals a}ﬂftrference at 30°. The scatter plot in FigiAB shows

the two interfering sets are 34-56 and 57-S9. samples of ITDandR; obtained for the channel with a cen-

Estimates for ITD, 1D, andR are extracted mdepen-_ ter frequency of 500 HZabout 7000 samples in tojalin
dently for all frequency channels. Since the cross-correlation

function is periodic, resulting in multiple peaks for mid to
high frequencies, we consider the following strategy for esTABLE I. Speech signals of the training set.
timating ITD. We study deviations from the target ITD for

individual frequency channels, which is obtained from thPID Speaker ID Utterance
ITD-azimuth mappings presented in Sec. V. ConsequentlySO MKLSO “Primitive tribes have an upbeat attitude”
we compute ITD as the peak location of the cross- St FCKEO “Only the best players enjoy popularity .
. . . MCDCO Our aim must be to learn as much as we teach
correlation fun_cthn in the range® w; centered at the target s3 FEARO “Development requires a long-term approach”
ITD, Wherewl IndlcateS the Center frequency Of thlb Chan' sS4 FDMSO “Poets’ moreover, dwell on human passions"
nel. IID; corresponds to the mean power ratio at the two earsss FETBO “Change involves the displacement of form”
expressed in decibels S6 FCMMO “The system works as an impersonal mechanism”
S7 MJIWSO “Most assuredly ideas are invaluable”
S8 MRVGO “False ideas surfeit another sector of our life”
IID;=20 |0910( 2 rlz(t)/ E ||2(t)) , (15 S9 MJRHO “But in every period it has been humanism”
t t

2242 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003 Roman et al.: Speech segregation



A, . addition, we display the empirical mean of the samples and
— theoretical the theoretical one derived i0l3). Similarly, Fig. B)
= = empirical shows the results that describe the variation of Mith R;

for a channel with a center frequency of 2.5 kHz and com-
pares the empirical mean with the one derivedlid). Note
that R; incorporates the HRTF responses at the better ear.
Therefore, theR axis for the theoretical mean is converted
* accordingly. Figure 6 exhibits a systematic shift of the esti-
mated ITD and IID with respect tB for real signals. More-
over, the theoretical means obtained in the case of pure tones
match the empirical ones very well. Similar matches are ob-
served in other frequency channels and other spatial configu-
rations.
The above observation extends to multiple-distracter
, . , scenarios. As an example, Fig. 7 displays smoothed histo-
-1 -0.5 0 0.5 1 grams that show the relationship betwd®nand both ITD
ITD (ms) [Fig. 7(A)] and 11D, [Fig. 7(B)] for a three-source situation.
B Samples correspond to a frequency channel with a center
frequency close to 1.5 kHz for target at 0hedian plang
and two interferences at30° and 30°. Note that the inter-
fering sources introduce systematic deviations of the binaural
cues. Consider a particularly troubling case: the target is si-
lent and two interferences have equal energy in a given T—F
unit. This results in binaural cues indicating an auditory
event at half of the distance between the two interference
locations; for our setup, it is 0°—the target location. How-
S ever, the data in Fig. 7 suggest a low probability for this case.
Figure 7 instead shows a clustering phenomenon, suggesting
that in most cases only one source dominates a T—F unit.
By displaying the information in the joint ITD-IID
space, we observe a location-based clustering of the binaural
cues, which is clearly marked by strong peaks that corre-
o 5 10 15 spond to distinct active sources as shown in Fig)7There
1D (dB) exists a trade-off between ITD and IID across frequencies,
where ITD is most salient at low frequencies and IID at high
FIG. 6. Relationship between ITD/ID and the relative strenBitior & fraqyencies. But, a fixed cutoff frequency that separates the
two-source configuration: target in the median plane and interference on the A . .
right side at 30°(A) The scatter plot shows ITD ar estimates from the ~ €ffective use of ITD and IID does not exist for different
training corpus for a channel with center frequency of 500 Hz. The solidspatial configurationgsee Fig. 8 latgr This motivates our
curve shows the theoretical megsee Eq.(14)] and the‘ dash curve shows ~hoice of a joint ITD—IID feature space that optimizes the
the data mear(B) Results for IID for a filter channel with center frequency . . . .
2.5 kHz. The solid curve shows the theoretical mgsee Eq(15)] and the system performance across different configurations. Differ-
dash curve shows the data mean. ential training seems necessary for different channels, given

— theoretical
= = empirical

-15 -10 -5

A c

FIG. 7. Relationship between ITD/IID and the relative streri@flor a three-source configuration: target source in the median plane and interferer@@°at
and 30°. Statistics are obtained from the training corpus for a channel with center frequency close to 1%) kHgtogram of ITD andR samples(B)
Histogram of 1ID andR samples(C) Clustering in the ITD-IID space.
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that there exist variations of ITD and, especially, 11D values A

with different center frequencies. +:EDD'
Since the goal is to estimate an ideal binary mask, we SOr 11
focus on detecting decision regions in the two-dimensional Z el

'S
o

ITD-1ID feature space for individual frequency channels.
Consequently, standard supervised learning techniques cal
be applied. For théth channel, we test the following two
hypotheses. The first one I4;: target is dominant oR;
>0.5, and the second oneh : interference is dominant or
Ri=<0.5. Based on estimates of the bivariate densities P

p(x|H;) and p(x|H,), the classification is done in accor-
dance with themaximum a posteriorfMAP) decision rule: o= . . . . .
p(H1)p(X|H1)>p(H,)p(x|H,). There exists a plethora of 0 2 O har e 100 120
techniques for probability density estimation ranging from g

Error rate (%)
w
o

parametric techniquege.g., mixture of Gaussiah$o non- —T
parametric onege.g., kernel density estimatorsVe initially son = 1
tried the EM algorithm for learning Gaussian mixtuf@sda 35 = = :$g—::g .

et al, 2002, but this did not prove to be as robust due to the a0l
following factors:(i) the true number of mixing components
is usually unknown, andi) the algorithm tends to be sensi-
tive to parameter initialization. Even for the two-source sce-

Error rate (%)

nario, the method of computing ITD for mid- to high fre- 151
quencies can result in two-mode distribution for thig 10
hypothesis. In order to completely characterize the distribu- st &

tion of the data, we use the kernel density estimation method o , ‘ , ) ,
independently for all frequency channels. 0 20 40 60 80 100 120
. . . L . . Channel Number

Kernel density estimation is well documented in the lit-
erature(Silverman, 198§ so we only summarize its essence FIG. 8. Discriminability comparison for the three binaural cues, ITD, IID,
here. Generally, the multidimensional kernel density estimat@nd IED, the joint IED-IID space, and the joint ITD-IID space. Error rates
2’ . . . . . are displayed as a function of channel numidezquency for a classifica-
for n observation, ... X, of dimensionalityd is given by

tion task for two spatial configuration§A) Target source in the median

the following formula: plane and interference on the right side at &) Target source in the
n d median plane and interference on the right side at 30°. IED results are
~ 1 Xj — Xij shown for frequencies above 1.5 kHz, i.e., above channel number 80.
f00=2 ———II K| =], (17
i=1 nhl...hdJ:1 hj

) . . density estimation method presented above. An error is made
wherex=(x,.... Xq) is a feature vectox;; is thejth element —p0naver the estimated binary mask value for a T—F unit
of x;, K'is a Gaussian function, anly’s are parameters igers from the corresponding ideal value. Figure 8 shows
called bandwidths that define the amount of smoothing fokhe error rates with respect to frequency channel using the

the empirical distribution. In our case, the ITD-IID feature Cooke corpugsee Sec. VIAas the test set, where we con-
space has dimensionality=2. The selection of the smooth- gjqer o cases: target source in the median plane and the

ing parameters is critical to the success of the estimatiorgicous,[iC interference at §Fig. 8A)] and 30°[Fig. 8B)].
process: for too-small values it approximates the data wellepy rasyits are given for the frequency range of interest—
but generalizes poorly, and for too-large values the structurgy .« 1 5 kHz(i.e., channel number-80). As the source

of the data distribution disappears. One approach for findingenaration increases, error rates for IED and 11D improve. On
optimal values is the least-squares cross-validation methoge other hand, ITD loses discriminability for high-frequency
(LSCV) (Silverman, 1986 We employ the LSCV method pannels where the multiple-peak problem results in the

for high dimensions and.the Gaussign kernel given by Sailame ITD for both target and interfereriéég. 8(B)]. Figure
et al. (1994 (p. 808. Optimal smoothing values are choseng 554 displays the corresponding error rates for the joint

as local minima in the rande0;/4, 3n7,1/é"i/2,]' where | Tp_jip space and the joint IED—IID space, and it shows
i rep'resentsithe variance of the data set intieimension ¢ the joint ITD—IID space vyields the best overall perfor-
andn is the size of sample data set. mance across different spatial configurations. As indicated in

One cue not employed in our model is IED. Auditory g g we have found no benefit for using IED after incor-
models generally use IED in the high-frequency raf§®e,  ,,rating ITD and 11D, and hence it is not utilized in our
for example, Bodden, 1993since the auditory system be- model.

comes gradually insensitive to interaural phase differences

aboye 1.5 kHz. I_n agdmon, the occurrence of mu_l'uplg peakﬁll_ EVALUATION AND COMPARISON

at high frequencies in the cross-correlation function is much

reduced for the IED cue. We have compared the individual A binary mask produced by the model described in the
performance of the three binaural cues: ITD, IID, and IED,last section approximates very well the corresponding ideal
for a one-dimensional classification task based on the kerndinary mask, which is obtained by comparing the energies of
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A TABLE IlI. Target signals of the test set.

5000 ID Speaker ID Utterance

SO MWSBO “Bright sunshine shimmers on the ocean”

;":7 S1 MDCDO “Challenge each general’s intelligence”

- S2 MDHSO0 “The Thinker is a famous sculpture”

% S3 MTAAO “Only lawyers love millionaires”

- S4 MRPC1 “Biblical scholars argue history”

&’ S5 FPKTO “They make us conformists look good”
S6 FIREO “Artificial intelligence is for real”
S7 FPACO “A good attitude is unbeatable”

_ S8 FREHO “Too much curiosity can get you into trouble”
80 [ ) 1 S9 FBCHO “Clear pronunciation is appreciated”
0.0 Time (sec) 15
B
5000 through original target and intrusion in order to obtain signal

and noise, as done by Wang and Bro(@899. The problem

) with such a measure is that loss of target energy is not pe-

g nalized, and as a result a separate measure of retained target

§ energy ngeds to pe givéivang and Brpwn, 1999Equation

g (18) provides a single measure, and in the case of an all-one

e mask yields the original SNR. Though the signal partlig)
is higher than that retained by a binary mask, it is offset by

5 the denominator that is also higher than retained noise en-

T | ergy; the denominator penalizes both retained noise by the
0.0 Time (sec) 15 binary mask and target distortion. Our measure is more strin-
FIG. 9. A comparison between an ideal binary m#sk and the binary gent than the cgnventlonal SNR measure; indeed, our tests
mask resulting from our modéB) for a mixture of male utterance in the SNOW that(18) gives systematically lower SNR values. To
median plandtargej and female utterance on the right side at 8aterfer- ~ minimize the loss of target energy we take advantage of the
ence. The black regions indicate those T—F units dominated by targethigher initial SNR at the better ear. As a result, the recon-
speech. structed signal corresponding to the better ear contains more

target energy. Therefore, all the following evaluations are
the original target and interference before mixing. As an experformed at the better ear.
ample, Fig. 9 shows a comparison between the ideal binary The system performance is measured on independent
mask and the estimated mask for a mixture of target malgest corpora for different spatial configurations. For the two-
speech presented at 0° and interference female speech at 3&urce scenario, one test set is the corpus collected by Cooke
at the better ear. In the figure, a blank pixel indicates a T-K1993, chosen because it is commonly used in computa-
unit in which the target dominates. The two masks are veryional ASA studies(Brown and Cooke, 1994; Wang and
similar, with an SNR difference of only 0.19 dB. Brown, 1999; Wuet al, 2003. The corpus contains ten
The performance of a segregation system can be asoiced speech signals and ten noise intrusions, encompassing
sessed in different ways, depending on intended applicationg. variety of common acoustic interferences such as telephone
To extensively evaluate our model, we use the followingringing, rock music, and other speech utterances. In addition,
three criteriaf1) an SNR measure using the original target aswe employ a second corpus containing ten normal speech
signal;(2) ASR rates using our model as a front end; €Bid  utterances from the TIMIT databagsee Table Il as target
human speech intelligibility tests. Results with each criterionmixed with the ten intrusions from the Cooke corpisee
are given below. Table 1lI). In the case of three sources, we use the Cooke
corpus for testing: five speech signals form the target set and
. the other five form one interference source. The ten intru-
A. SNR evaluation
To conduct an SNR evaluation, a segregated signal i$ABLE Iil. Noise signals of the test set.
reconstructed from a binary mask following the method de

scribed in Sec. Il. To quantitatively assess system perfor- Utierance

mance, we measure in decibels the SNR using the original NO 1-kHz tone

target speech before mixing as signal N1 Random noise
N2 Noise bursts
N3 “Cocktail” party noise

_ 2 2
SNR=10 |09102 ST(t)/ 2 (st(t)—sg(1)%, (18 N4 Rock music
t t N5 Siren
where s¢(t) represents the original target signal recon- m‘; TS'ePhO”E trill | i
f _ : “Don’'t ask me to carry an oily rag like...”
structed using an all-one mask asi(t) the estimated target NS »She had your dark suit in greasy wash...”

reconstructed from the binary mask. With a binary mask, a yqg

) “Why were we keen to use human...”
more conventional SNR measure would use the mask to pass
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FIG. 10. Systematic results for two-source configuration with 5° azimuthFIG. 11. Systematic results for two-source configuration with 30° azimuth
separation. Black bars correspond to the SNR of the initial mixture, whiteseparation. Black bars correspond to SNR of the initial mixture, white bars
bars indicate the SNR obtained using ideal binary mask, and gray bars showy the SNR obtained using an ideal binary mask, and gray bars to the SNR
the SNR from our model. Results are obtained for speech mixed with tefrom our model.(A) Target at 0°, interference at 30®B) Target at 30°,
types of intrusiongsee Table Il} for different spatial configurationgA) interference at 60°C) Target at 60°, interference at 90°.

Target at 0°, interference at 5B) Target at 40°, interference at 45C)

Target at 80°, interference at 85°.

sions then form the second interference source. Therefore, in A
this three-source corpus every mixture contains two utter- 20}
ances plus an additional intrusion. 15}

For the two-source case, the model is systematically ]
evaluated at the better ear for various combinations of azi- ;; HE E I Hi

model against that obtained using an ideal binary mask. For

) !
muth angles. We compare the SNR gain obtained by our E St il Hi I
Z L k

o

the test corpus of Table Il, Fig. 10 shows the results for a -5} ! I

spatial separation of 5° and target at azimuth 0°, 40°, and _10t

80°. Results are similar across mixtures in the same noise L S
category; hence, we present the averaged result for each cat- TR0 NT N2 N3 N4 N5 N6 N7 Ne NS
egory. Very good results are obtained when the target is close

to the median plane for an azimuth separation as small as 5°. B

Performance degrades when the target source is moved to the oof

side of the head; this is a direct consequence of poorer reso- sl

lution of the binaural cues at higher azimuth angles. When
comparing with the SNR of the initial mixture, there is an 10¢

average-SNR gain of 13.76 dB for the target in the median 2 sl I !
plane, and it reduces to 5.04 dB with the target at 80°. When % ol - L]
the spatial separation increases, excellent results are obtained sl
across all spatial configurations. Figure 11 shows results for o

target at 0°, 30°, and 60° and interference at 30° to the right
of target. Similar results are obtained for other spatial con- -15
figurations. Figure 12 shows that the system performs

equally well on the Cooke corpus. Figure(A2 gives the FIG. 12. Systematic results for two-source configuration using the Cooke

° ~oi ; ; orpus as the test corpus. Black bars correspond to SNR of the initial mix-
results for a 5° azimuth separation and the average ImprOV(?ure, white bars to the SNR obtained using an ideal binary mask, and gray

ment is 13-7_3 dB. Similarly, Fig. 1B) gives the results for a s to the SNR from our modelA) Target at 0°, interference at 5(B)
30° separation. Target at 0°, interference at 30°.

NO N1 N2 N3 N4 N5 N6 N7 N8 N9
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FIG. 13. Evaluation for a three-source configuration. The target is in theFIG. 14. SNR comparison between the Bodden maaibite barg and our
median plane and intrusions are-a80° and 30°. Black bars correspond to  model(gray bars for a two-source configuration: target in the median plane

the SNR of the initial mixture, white bars to the SNR obtained using idealand interference at 30°. The black bars correspond to the SNR of the origi-
binary mask, and gray bars to the SNR from our model. nal mixture.

formation provided by localization and makes an optimal use
Our approach, like other location-based methods usingf frequency-dependent ITD and IID cues.

cross correlation, can be extended to cases with more than Bodden’s system uses a 24-channel filterbank intended
two sources. With given locations, our model performs targeto simulate critical bands. For a fair comparison, our imple-
segregation in a similar manner, i.e., estimating an ideal bimentation of the Bodden system uses the same time—
nary mask following the method outlined in Sec. V B. Figurefrequency resolution employed in our system with a 128-
13 illustrates the performance of the model in a three-sourcehannel gammatone filterbank; we also implemented the
scenario with target located in the median plane and twdodden model with 24-channel critical bands and the results
interfering sources at30° and 30°. Here, the ten noise in- are not as good. We find that, when two sources are relatively
trusions from the Cooke corpus are presented at 30° azimuttiose, the Bodden model is less robust than ours. Our com-
and the target is reconstructed based on the right ear mixturparison is based on the Cooke corpus and a spatial configu-
As previously, results are mean values for the ten types ofation of target at 0° and intrusion on the right side at 30°, an
noise intrusion. The performance degrades compared to tHZzimuth separation in the range where his model performs
corresponding two-source situation, from an average SNR ag#ptimally. As displayed in Fig. 14, our model shows a con-
about 12 to 4.10 dB. Still, the average SNR gain obtained isiderable improvement over the Bodden system, producing
approximately 11.31 dB. 3.5-dB average improvement. The improvement is especially
In order to draw a quantitative comparison with anotherhigh for a few casese.g., N5 and Nfwhere our estimated
binaural processing model, we have implemented the BodMasks result in large SNR improvements over the original
den model(Bodden, 1998 which produces good-quality MIXtures.
sound separation using source locations. The localization
stage of this model uses an extended cross-correlatioB. ASR evaluation
mechanism based on contralateral inhibition_ and it adapts tc_> As discussed before, an ideal binary mask is defiaed
HRTFs. The separation stage of the model is based on es{iyiqri . Similar a priori masks have been shown to produce
mation of the weights for a Wiener filter. Speqﬂcally, for a impressive performance when applied to the automatic rec-
given T—F unit the weight is given by the ratio between aggnition of noisy speech using a “missing data” approach
desired excitation gnd an _actual one. The actuallexcnatm(bookeet al, 2001. In this approach, a continuous density
corresponds to the integration of the cross-correlation patterfigden Markov model recognizer is modified such that only
across the azimuth axis, and the ideal peak shape is used ag@ustic features indicated as reliable in the mask are used
window to derive the desired excitation. The Bodden mOdEHuring decoding_ Since our ideal binary masks are generated
differs from ours in several aspects. First, his sound localizain a similar way to those used by Cooke¢al, we would
tion stage builds on the previous models of Lindemannexpect them to be an equally effective front end to missing-
(1986 and Gaik(1993, which simulate aspects of the pre- data ASR.
cedence effect for reverberant scenarios, whereas our local- Qur motivation for ASR evaluation is twofold. First, a
ization stage is simpler and does not address the precedengeactical system must estimate such a mask, and as a result
effect. Second, his model requires only a target azimuth andeviations from an ideal mask must be considered. Hence,
no training is necessary as spatial configuration changes. Alve want to find how tolerant recognition performance is to
though these aspects add to the flexibility of his model, theleviations from an ideal mask. Second, we want to give a
estimation of Wiener filter weights appears less robust thaguantitative measure of the potential improvement on ASR
our binary estimation of ideal masks. In addition, ourperformance using our speech segregation model as a front
configuration- and channel-specific training utilizes more in-end.
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We use the missing-data technigi@ookeet al., 200J) A
for our ASR evaluation. This technique uses a binary time—
frequency mask, where 1's indicate reliable T—F units and
0’s unreliable or missing ones. Hence, it works seamlessly
with the output from our speech segregation system. We
have implemented the missing data algorithm with the same
128-channel gammatone filterbank as described in Sec. lll.
Feature vectors are obtained using the instantaneous Hilbert
envelope at the output of each gammatone filter. More spe-
cifically, each feature vector is extracted by smoothing the , , , , , ,
envelope using an 8-ms first-order filter, sampling at a frame 0 10 20 s 40 50 60
rate of 10 ms and finally log compressing. There are different Energy deviation ratio (%)
classification methods for missing-data recognition. Here, we B
use the bounded marginalization meth¢@ooke et al,

200)). As in the original study, the task domain is recogni-

tion of connected digits, and both training and testing are
performed using the male speaker dataset in the TIDigits
databasedlLeonard, 1984

To study the sensitivity of an ideal mask to estimation
error, our first test assesses the correctness score and the
accuracy scorgcorrectness minus word insertion erpors
when a random deviation from an ideal binary mask i-s. intro- % o pvS v - ps pos
duced. Here, we use for simplicity a monaural condition as Energy deviation ratio (%)
in Cookeet al. (2001). Deviations are obtained by randomly
flipping the same number of bits from 0's and 1's; the num_F_IG. 15. Degradation of recognition score with deviations frorr_\ an ideal
ber is measured as percentage of the total number of 1's in e:{ﬁl ?Sn:ja;k evalated 1o Iree ST values: o \dfare, 0 db (circle)

(diamond. (A) Correctness scoréB) Accuracy score.
ideal mask. The percentages tested are 0%, 5%, 10%, 20%,
and 50%. Since the underlying acoustic energy associategd
with a T—F unit, or a bit, can vary in a large range, we

Correctness (%)

Accuracy (%)

ded female speaker at30°. The results in Fig. 16 show

. ) - that an ideal binary mask exhibits only slight and gradual
further measure the energy deviation ratio as the ratio of th‘aegradation in recognition performance with decreasing

energy corresponding to fiipped bits and the total energy CO'SNR and increasing number of sources. In the two-source

trespcindmg l:o thg |d§al .tt)rlln?ry ma§k. ghekrestultls 1‘205 Oa rnt"‘I(?:ase, the estimated masks perform equally well as the ideal
arget speaker mixed with “car nois¢Cookeet al, D masks. In the three-source case, the estimated masks do not

are given in Fig. 15, where the abscissa indicates the ener%’erform as well, and this is to be expected since we know

de:;'at'gn ratio. Threde S.NR levels for tze mixture, i.€3, 0, from Sec. VI A that the quality of ideal mask estimation for
and 5 dB, are tested. Figure(#9 give the correctness score three sources is not as good as for two sources. Consistent

and Fig. 1%B) the accuracy score. Figure 15 shows that both iy, the observations from Fig. 15, performance degrades

correctness score and accuracy score decrease gradually gnfe quickly for the accuracy score than for the correctness

systematically as deviation ratio increases. This suggests thal, e opserve that large improvements over baseline perfor-
ideal binary masks are robust to estimation error. A compariz,once are obtained across all conditi¢tsa lesser degree

son between Fig. 18) and Fig. 18B) shows that the accu- ¢, the accuracy score in the three-speaker conditidhis

racy score degrade_s fas'ger than .the correctness score. TRiSows the strong potential of applying our model to robust
suggests that word insertions, which result from noise retens-peech recognition.

tion or word boundary blurring, are more sensitive to estima-
tion error than recognition of present words. o i

The second test directly evaluates binary masks esti(—:' Speech intelligibility evaluation
mated by our system for binaural conditions with two Finally, we evaluate our model on speech intelligibility
sources and three sources. For all tests, the same male targath human listeners. Before reporting the results, we should
speaker is located at 0°. Both training and testing of thepoint out that human listeners have a remarkable ability to
system are performed on acoustic features from the left egrerform ASA, and their superior ability to recognize speech
signal (see Fig. 1 Figure 16A) and Fig. 16B) show the in the presence of acoustic interference is the very motiva-
correctness and accuracy scores for a two-source conditiotipn for our model design. Because of this, our tests focus on
where the interference is another male speaker at 30°. Thelatively low SNR conditions; otherwise, scores will be in-
performance of our model is compared against the ideadliscriminately high for both unprocessed mixtures and seg-
masks systematically for four SNR levels, i.e., 57-&, and  regated speech.
—10 dB. Also shown in the figure is the baseline perfor- We use the Bamford—Kowal—Bench sentence database
mance where the recognition is conducted on unprocessdbat contains short semantically predictable sente(®esch
mixtures from the left ear. Similarly, Fig. 16) and Fig. and Bamford, 1970 for intelligibility tests. The score is
16(D) show the results for the three-source case with arevaluated as the percentage of keywords correctly identified,
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ignoring minor errors such as tense and plurdl@yubbs and comprehended and a human operator marked the result. Each
Summerfield, 1990 Two different spatial configurations are listener participated in a total of 8 conditions. Each condition
considered: a two-source configuration at 0° and 5°, and aontained 25 new, randomly chosen sentences, with the first
three-source configuration at30°, 0°, and 30°. To eliminate 5 sentences used for practice only and their data discarded.
potential location-based priming effeddlaljkovic and Na- Figure 17 gives the keyword intelligibility scofenedian
kayama, 1996we randomly swap the locations for target values and interquartile rangefer the two-source configu-
and interference for different trials. In the unprocessed conration. Three SNR level are tested: 65, and —10 dB,
dition, binaural signals are produced by convolving originalwhere the SNR is computed at the better ear for each sen-
signals with the corresponding HRTFs and the convolvedence. The interfering source used for this configuration is
signals are presented to a listener dichoticédlge Bodden, babble noise. The general finding is that our algorithm im-
1993. In the processed condition, our algorithm is used toproves the intelligibility score for the tested conditions. The
reconstruct the target signal at the better ear and results ai@provement becomes larger as the SNR decred@eé% at
presented diotically. —10 dB), even though the algorithm introduces more target
Twelve native English speakers with normal hearing, bedistortions at lower SNR levels. Our informal observations
tween 24-30 years old, participated in the experiments. Theuggest, as expected, that the intelligibility score improves
tests were conducted in a sound-insulating bdAKC model  for unprocessed mixtures when two sources are more widely
40a-9 and signals were presented over Sennheiser HD 258eparated than 5°. Figure 18 shows the results for the three-
headphones. At the beginning of a test, subjects were famisource configuration, where our model yields a 40% im-
iarized with the voice of a target male speaker and they werprovement. Here, the SNR is fixed atlO dB at the better
free to adjust the sound volume to a comfortable level. Thesar. The two interfering sources are one female speaker and a
task of a subject during each test run was to report what wadifferent male speaker. Note that, in this case, azimuth sepa-
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FIG. 17. Keyword intelligibility score(median values and interquartile FIG. 18. Keyword intelligibility score(median values and interquartile
range$ before (white barg and after processingblack bar$ for a two- range$ before (white barg and after processin¢pblack bar$ for a three-
source conditio(0° and 59 at three SNR values: 6;5, and—10 dB. source conditior{0°, 30°, and—30°) at —10-dB SNR.
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ration is high between the three sources. Though we have naism. Our computational results demonstrate that computed
formally tested in the three-source configuration, we wouldocations can play an effective role in across-frequency
expect that a trend similar to the one in Fig. 17 occurs withgrouping. On the other hand, many monaural cues are also
respect to SNR levels; that is, the model improvement deimportant for sound source segregatitsee the Introduc-

creases as SNR increases. tion), and how to incorporate both monaural and binaural
We recognize that comprehensive human subject evallzues in a comprehensive system remains a challenge.
ations of a model would require a separate st(elg., see Our approach uses characteristic clustering of the joint

Stubbs and Summerfield, 199@nd indeed this is a topic we ITD-IID space in order to accurately estimate an ideal bi-
intend to pursue in the future. Nonetheless, as far as waary mask. Related models for estimating target masks
know, our system is the first binaural model that has beemhrough clustering have been proposed previou3hssier
shown to produce a large speech intelligibility improvementand Berthommier, 1997; Lehn, 1997; Glotet al, 1999,

for normal listenergsee Kollmeier and Koch, 1994; Sham- Jourjine et al, 2000. Notably, the experimental results by
soddini and Denbigh, 2001The configurations and SNR Jourjine et al. (2000 suggest that speech signals in a
conditions under which improvement occurs will be system-multiple-speaker condition obey to a large extent disjoint or-

atically characterized in future investigation. thogonality in time and frequency. That is, at most one
source has a nonzero energy at a specific time and frequency.
VII. DISCUSSION Such models, however, assume input directly from micro-

The human auditory system is capable of adapting to Qhone rgcordings and h_ead-related f.ilteri.ng is not con.sidered.
variety of acoustical situations. A key feature of our model isSimulation of human binaural hearing introduces different
the introduction of supervised learning for different spatialconstraints as well as clues to the problem. First, both ITD
configurations, and training is conducted independently fo@nd IID should be utilized, since 1ID is more reliable for
different frequency channels. We assume that such trainingigher frequencies than ITD. Second, frequency-dependent
takes place before performing specific segregation tasks, af@mbinations of ITD and 11D arise naturally for a fixed spa-
it would correspond to learning during the developmentiial configuration. Consequently, channel-dependent training
stage. Supervised signals for a spatial configuration of targder €ach frequency band becomes necessary. Our tests with
and intrusion could be supplied in a number of ways, includJust ITD (as in Glotinet al) or channel-independent classi-
ing sound localization, signal estimation from a specific lo-fication(as in Jourjineet al) yield considerably inferior per-
cation, and even information extracted from a different mo-formance.
dality (e.g., vision. It is worth emphasizing that, unlike a As illustrated in Fig. 13, the proposed model can be used
typical supervised learning situation, the training here doe&0 extract target speech from an acoustic mixture that con-
not need to capture the specific contents of training signaldains more than one intrusion. Although segregation results
As a result the model can be trained equally well using othefre expected to drop as the number of sources increases, this
natural sounds, and estimated distributions generalize in Broperty of our model differs from blind source separation
broad range. In an earlier studiRomanet al, 2002, for ~ using independent component analysityvaarinen et al,
example, we employed a different training methodology and?001) or spatial filtering using sensor array&rim and
a different training corpus, but the system performance wa¥iberg, 1996; such techniques require that the number of
very similar. sensors increases as the number of acoustic sources in-

While satisfying the demands of an effective computa-creases. A main reason for this difference is that consider-
tional system, our model is motivated by physiological andations of human audition play a large role in our model de-
psychoacoustical findings regarding the extraction of spatia$ign.
featuregPattersoret al, 1988. The peripheral processing is Conventional two-microphone adaptive beamformers
based on a gammatone filterbank, which has a foundation ipan develop one deep null which cancels almost perfectly
physiology and psychoacoustics. Similarly, the cross-one interference under optimal conditiofGreenberg and
correlation mechanism for ITD extraction as well as theZurek, 200). The performance, however, degrades when the
across-frequency integration for localization are supporteciumber of interfering sources increases and is largely af-
by related physiological findingdopper and Fay, 1992 fected by the relative SNR of the individual interferences in

An open guestion concerns the role of spatial location irthe reference channel. Weig987 measured the attenuation
perceptual separation of competing sounds. The experimentd individual interferences in acoustical mixtures across dif-
by Culling and Summerfield1995, using simulated vowels ferent conditions. The experimental results in the anechoic
in which the formants were defined by noise bands, showedase show attenuation up to 14.5 dB in the two-source case,
that simultaneous grouping across frequencies based on IT®hen both target and interference are active during filter ad-
is weak. Later experiments by Darwin and Hukih997, aptation. For the three-source case, the performance degrades
1999 found that ITD plays a weak role in concurrent soundacross all interferences by 4 dB, and improvement can be as
segregation, but a much stronger role in linking acoustidow as 0 dB. In comparison, our model works for a wide
events from a common location over time. The recent experirange of spatial configurations with two or more sources; for
ments of Freymaiet al. (2001 further showed a sizable im- example, Fig. 13 shows that with three sources our model
provement in recognizing target speech in the presence dafill obtains an average SNR gain of 11.3 dB. Conditions
one or two competing speakers based on perceived spatiafith high SNRs degrade the performance of adaptive beam-
separation, which suggests a location-based grouping mechfmrming. Our model, on the other hand, works especially
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well for high-SNR scenarios. Subband versions of adaptivevhen tested with normal listeners, the model produces large
beamforming also exidfsee, for example, Nordholret al,, speech intelligibility improvements for two-source and three-
2003. In this case, the signal is analyzed independently irsource conditions.

frequency bands, and different directivity patterns are adap-

tively chosen in each band. This allows cancellation of mul-
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