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ABSTRACT

A computational model of primitive auditory scene analysis is
described, in which the grouping of peripheral frequency channels
is signalled by the pattern of temporal synchronisation in a net-
work of neural oscillators. It is demonstrated that the model is
able to group acoustic components according to their fundamental
frequencies and onset times. Implications for models of pitch per-
ception are discussed.

1. INTRODUCTION

Bregman'’s [2] recent account of audition holds thatsalitory
scene analysis performed on the complex mixture of sounds

reaching the ears. This process consists of two conceptually dis-

in which the grouping of peripheral channels is signalled by the
pattern of temporal synchronisation within a network of neural
oscillators. It is demonstrated that the oscillator network is able to
group acoustic components which have the same fundamental fre-
guency or have a common onset time.

2. THE MODEL
The proposed model consists of four stages; peripheral auditory

processing, periodicity analysis (correlogram), oscillator network
and attentional searchlight. For further details see [3].

2.1. Auditory Periphery

The frequency selective properties of the basilar membrane are

tinct stages. In the first stage, sound is decomposed into a collec- modelled by a bank of gammatone filters [13], where each filter
tion of sensory elements (features). Subsequently, features that are simulates the frequency response of a particular point along the
likely to have arisen from the same acoustic source are grouped to cochlear partition. The studies described here employ a bank of 32

form a perceptual whole, or ‘stream’. Although Bregman'’s

account finds much support in the psychophysical literature, the
physiological mechanisms which underlie auditory grouping are
far from clear. In particular, there have been few attempts to

address the question of how groups of features are represented and

communicated within the auditory system. This issue is the sub-
ject of the computational modelling study described in this article.

filters, with centre frequencies distributed between 100 Hz and 2
kHz on an ERB-rate scale [7]. The output of each filter is con-

verted to a probabilistic representation of auditory nerve firing

activity by the Meddis [10] model of inner hair cell transduction.

2.2. Correlogram

Recently, theories of pitch perception have been proposed which

Physiological studies suggest that features are encoded in the jntegrate periodicity information across resolved and unresolved

higher auditory nuclei by maps of cells, in which frequency and

harmonic regions. Models of this type are able to account for

some other parameter are represented on orthogonal axes (see [4lmany psychophysical pitch phenomena, and are also able to

for a review). In normal listening environments, a number of
sound sources will be simultaneously active and therefore the

explain the finding that a difference in fundamental frequency
between two complex sounds can assist their perceptual segrega-

activity in these maps will represent the superimposed responses tjgn [11]. Here, we adopt one of this class of pitch models known
to several acoustic sources. Hence, auditory grouping requires that 55 thecorrelogram in which periodicities in the temporal fine
the responses of neurons which code for features of the same giyycture of auditory nerve firing patterns are identified by an
acoustic source should be linked. This issue has been called the 5ytocorrelation analysis at each characteristic frequency [4]. For

binding problent9].

One solution to the binding problem is the grouping of feature
detectors according to the coherence (synchrony) of their tempo-
ral responses. Essentially, this scheme involves the multiplexing
of neural activity; firingrate indicates the probability that a fea-
ture is present, whereas firirgynchronyrepresents grouping [9].
This hypothesis is supported by recent physiological studies,
which suggest that visual stimuli initiate synchronised neural
oscillations in disparate regions of the visual cortex [8].

With the exception of the recent work of Wang [14], there have
been few attempts to exploit temporal synchronisation in models
of auditory grouping. In this paper, we describe an auditory model

an auditory filter channd| the running autocorrelatiosg at timet
and lagrt is given by

a (t1) = ) re (t=T)re (t=T-1)h(T) (€N
i=0

where

T=idt @)

Here,dt is the sample period (0.0625m#$)T) is a rectangular
window of width 20 ms and is the probability of firing activity

in the auditory nerve, derived from the Meddis hair cell model.



Equation 1 was computed for valuestdbetween 0 ms and 20 ms
in steps ofit.

2.3. Oscillator Network

confines the coupling strength to the range [0,1]. Parameter values
were set by inspectioy£5x10°, A=0.95).

The learning rule given in equation 7 embodies a principle that is
closely related to the Gestalt heuristic of ‘common fate’. This term

In our scheme, it is assumed that source segregation is achieved bydescribes the tendency to group sensory elements which change in

selective attention to the neural activity in groups of auditory filter
channels. Grouping is encoded by the pattern of temporal synchro-
nisation in a fully connected network of sine circle maps [1]. Each
circle map models the phase dynamics of a neural oscillator,
which signals the grouping between its corresponding auditory fil-
ter channel and other channels. For clarity, we refer to units in the
network as ‘neurons’, although each is intended to reflect the
activity of a collection of neurons rather than a single cell. The
sine circle map is given by

O (x) =Xx+Q +4<sin(2rx) +n (mod 1) ®)

where the noise term represents equally distributed random
numbers in the interval [0,19]. The new phasé;(t+1) of the neu-
ron for channel is computed by applying the circle map on the
old phaseg;(t) and on an input value;, weighted by a coupling
strengthk:

0/(t+1) = 11 [0(61(1) +Kb(vi ()] @

The inputv; is related to the phases of the other neurons in the net-
work, weighted by a coupling matrij

25 Wi 6,
2 Wi
With parameter values=1.5,0=0.618 anc=5.0, neurons in the

network exhibit chaotic oscillations. When the coupling strength
W between two neurorisand; is high, the cells show an identical

phase response. Similarly, neurons that are weakly coupled give
rise to uncorrelated time series.

ui (t) = )

Learning in the network is determined by periodicity detection in
the correlogram. Initially, all neurons are strongly coupé¢#1,

for all i#j). At intervals of 1 ms, a correlogram is computed and
the autocorrelation functions for all channels are summed. The lag
at which the largest peak occurs in this summary functignis

taken to be the pitch period of the sound source (see also [4]):

T = MY g (1,1) ®)
f

The channels of the correlogram are sampled at this lag, giving an
estimatea(t, 1) of the strength to which each chanfied respond-

ing to the pitch period, at timet. These pitch strengths are used

to modify the coupling between neurons in the oscillator network,
according to the following learning rule:

Wij(t+1) = ®(1-A[1-W;(1)] -y |ai (t.Tp) g (1))  (7)
Here,y determines the learning rate akdletermines the rate at
which W returns to its resting level. The functi@rn(x), given by

X 0<sx<1
P(x)=q x>1 (8)
0 x<0

the same way at the same time [2]. Similarly, our learning rule
ensures that the coupling is reduced between channels that are not
responding to the same fundamental frequency at the same time.

2.4. Attentional Searchlight

The last stage of the model is an attentional mechanism, inspired
by Crick’s [6] proposal for an attentional ‘searchlight’. The
searchlight takes the form of rapid bursts of firing in a subset of
thalamic cells. When the thalamic neurons fire in synchrony with
the oscillations of a neuronal group, that group becomes the atten-
tional ‘foreground’ and other groups are relegated to the ‘back-
ground'.

Currently, the attentional searchlight is not explicitly implemented
in our computer model. Instead, we consider the temporal correla-
tion between the activity of pairs of neurons in the oscillator net-
work. The correlation between two time serd@) andY(t) is
given by

D x(t) y(t)

NORIODIN%

wherex(t)=X(t)-XOandy(t)=Y(t)-LYO If a pair of neurons in the
oscillator network are strongly coupled, the temporal correlation
of their response€ will be high. Hence, an attentional searchlight
that is synchronised to one of the cells will inevitably be synchro-
nised to the other. Similarly¢ will be low between neurons that
are weakly coupled; in this case, the searchlight may synchronise
to one cell or the other, but not both simultaneously. In Bregman'’s
[2] terms, high temporal correlation between neurons indicates
‘temporal coherence’ and low correlation indicates ‘streaming’.

3. SIMULATION RESULTS

C(X,Y) = ©)]

In the remainder of this article, we present results from two simu-
lations using the neural oscillator model (further results are also
reported in [3]). The first demonstrates that the oscillator network
is able to signal grouping by common fundamental frequency, and
the second demonstrates grouping by common onset. The parame-
ter values given in Section 2 were used for both simulations.

3.1. Grouping by Common Fundamental

The segregation of concurrent harmonic sounds can be likened to
the sifting of partials through a ‘*harmonic sieve’, which has
‘holes’ at integer multiples of its fundamental frequency. Moere

al. [12] have quantified the width of the holes in the harmonic
sieve using a mistuning paradigm. They presented listeners with a
harmonic complex in which one component was mistuned, so that
its frequency was not an integer multiple of the fundamental. For
mistunings of up to 3% of the harmonic frequency, the partial
made a normal contribution to the pitch of the complex. Compo-
nents mistuned by more than 3% began to be rejected by the har-
monic sieve, and made a smaller contribution to the perceived
pitch. Also, listeners heard partials that were mistuned by more
than 2-3% as a separate sound source.



1.0+ : i ceptual segregation. This desynchronisation is clearly illustrated in
Correlation within group Figure 2, which shows the response of the oscillator network for
the 8% mistuning condition.
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oscillator network. See the text for details. .
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. . . Figure 2: Neural oscillator response to a stimulus consisting of
Figure 1 illustrates the response of the model to a stimulus of 90 the first 12 partials of a 155 Hz fundamental. in which the 4th par-
ms duration, which consisted of the first 12 harmonics of a 155 Hz P ! P

fundamental. The 4th partial of the stimulus was mistuned by a (! (H4) has been mistuned by 8% of its harmonic frequency. The
percentage of its harmonic frequency. The correlation between stimulus was preceded by 20 ms of silence, during which all oscil-
groups (grey Circ|es) was Computed by averaging the tempora| lators remain synchronised. FoIIowing the onset of the harmonic
correlation C between the oscillator channel centred on the 4th complex (arrow), oscillators near to the mistuned component rap-
partial and the oscillator channels centred on the other harmonics idly desynchronise from the other neurons in the network.

of the complex. Formally,

Mbcencan :% S clhha) 10) 3.2. Grouping by Common Onset

1=1.35.12 The role of onset asynchrony in perceptual grouping has been

whereh; is the last 30 ms of the oscillator response for the periph- investigated by Ciocca and Darwin [5]. They asked listeners to

eral channel centred on harmoniof the stimulus. Similarly, the ~ judge the pitch of a harmonic complex in which one of the
within-group correlation (open squares) is given by resolved harmonics was mistuned. When the mistuned partial

started 160 ms before the other components of the complex, it

Moo = 1 C(h h made a reduced contribution to the perceived pitch. Its contribu-
within =75 2 (hi.hy) (11) tion was abolished if it started more than 300 ms before. Further, it
1=2,35.12 was confirmed that this effect was due to perceptual grouping

Itis clear from Figure 1 that the model is in qualitative agreement father than peripheral adaptation.
with the psychophysical data; mistunings of up to 3% maintaina ) . o
high correlation between neurons in the oscillator network, indi- Figure 3 illustrates the response of the oscillator model to stimuli
cating that all harmonics of the complex have been allocated to the Similar to those used by Ciocca and Darwin. The stimuli consisted
same perceptual group. At mistunings of greater than 3% however, of the first 12 harmonics of a 155 Hz fundamental, and had a dura-
there is a significant reduction in correlation between the oscillator tion of 90 ms. The 4th partial started between 50ms and 300 ms
centred on the 4th partial and the remaining oscillators; this indi- Pefore the other components. The figure shows the mean correla-
cates that the mistuned 4th harmonic has been perceptually segre-tion M between oscillators in the same group and in different
gated from the other components of the complex. groups, using the metrics given in equations 10 and 11. If[ is clear
that the oscillators coding the 4th harmonic desynchronise from
The response of the oscillator network to a mistuned component the other neurons in the network as the onset asynchrony is
can be explained by consideration of the learning rule in equation increased, indicating that the leading partial is perceptually segre-
6. Recall that the amount of weight change between two neurons is 9ated. This result follows directly from the learning rule given in
related to the difference in peak height in their corresponding cor- €quation 6, which reduces the weight between neural oscillators
relogram channels, measured at the pitch period of the source. For that do not exhibit a peak in their corresponding correlogram
a small mistuning, the channels of the correlogram near to the 4th channels at the same time.
harmonic still exhibit a peak at the pitch period of the complex;
hence, the weights in the oscillator network remain unchanged. 4. DISCUSSION
For larger mistunings, however, this peak is reduced in height and
therefore the weights to the oscillators in the region of the 4th har- A model of primitive auditory grouping has been described, in
monic are decreased. Consequently, the oscillators coding the 4th which groups are signalled by the pattern of temporal synchronisa-
partial desynchronise from the rest of the network, indicating per- tion in a network of neural oscillators. The model is in qualitative
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Figure 3: Model simulation showing the effect of onset asyn-
chrony on the mean correlation within and between groups in the
neural oscillator network. See the text for details.

agreement with psychophysical findings on perceptual grouping
by onset asynchrony and common fundamental frequency. Related
studies have also shown that a neural oscillator model is able to
explain auditory grouping by frequency proximity and temporal
proximity [3].

A notable feature of the model is that the neural oscillators are 6
strongly coupled in their resting state (see Figure 2). Hence, the
default condition of organisation in the model is fusion; all compo-
nents of the stimulus are assumed to have originated from the 7.
same acoustic source unless there is a reason to segregate them.
There is some empirical evidence to support this stance; for exam-
ple, a burst of white noise contains random cues for fusion and
segregation, but is perceived as a single coherent source [2]. 8.
The simulations reported in Section 2 illustrate an intriguing para-
dox. In the first example, a partial was excluded from an auditory
group when it was sufficiently mistuned; that is, pitch analysis
determined perceptual grouping. However, in the second case per- 9.
ceptual grouping determined pitch; a partial of a harmonic com-
plex that started earlier than the other components was excluded
from the pitch percept. It appears, then, that pitch analysis can
both follow auditory grouping and contribute to it.

Figure 4 shows a modification of the neural oscillator model
which might explain this phenomenon. This scheme employs a 1
processing loop, in which coupling adjustments based on the cur-
rent pitch period are fed forward to the oscillator network, and

Weights for ‘foreground’ group
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Figure 4: A modified neural oscillator model.

10.

channel weights are fed back to the correlogram to influence the
computation of the next pitch period. The channel weights fed
back from the network would reflect the contribution of each chan-
nel to the group in the attentional foreground, which in turn would

be determined by the thalamic searchlight. Work on this model is
currently in progress.
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