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ABSTRACT

A computational model of primitive auditory scene analysis is
described, in which the grouping of peripheral frequency channels
is signalled by the pattern of temporal synchronisation in a net-
work of neural oscillators. It is demonstrated that the model is
able to group acoustic components according to their fundamental
frequencies and onset times. Implications for models of pitch per-
ception are discussed.

1. INTRODUCTION

Bregman’s [2] recent account of audition holds that anauditory
scene analysisis performed on the complex mixture of sounds
reaching the ears. This process consists of two conceptually dis-
tinct stages. In the first stage, sound is decomposed into a collec-
tion of sensory elements (features). Subsequently, features that are
likely to have arisen from the same acoustic source are grouped to
form a perceptual whole, or ‘stream’. Although Bregman’s
account finds much support in the psychophysical literature, the
physiological mechanisms which underlie auditory grouping are
far from clear. In particular, there have been few attempts to
address the question of how groups of features are represented and
communicated within the auditory system. This issue is the sub-
ject of the computational modelling study described in this article.

Physiological studies suggest that features are encoded in the
higher auditory nuclei by maps of cells, in which frequency and
some other parameter are represented on orthogonal axes (see [4]
for a review). In normal listening environments, a number of
sound sources will be simultaneously active and therefore the
activity in these maps will represent the superimposed responses
to several acoustic sources. Hence, auditory grouping requires that
the responses of neurons which code for features of the same
acoustic source should be linked. This issue has been called the
binding problem [9].

One solution to the binding problem is the grouping of feature
detectors according to the coherence (synchrony) of their tempo-
ral responses. Essentially, this scheme involves the multiplexing
of neural activity; firingrate indicates the probability that a fea-
ture is present, whereas firingsynchronyrepresents grouping [9].
This hypothesis is supported by recent physiological studies,
which suggest that visual stimuli initiate synchronised neural
oscillations in disparate regions of the visual cortex [8].

With the exception of the recent work of Wang [14], there have
been few attempts to exploit temporal synchronisation in models
of auditory grouping. In this paper, we describe an auditory model

in which the grouping of peripheral channels is signalled by th
pattern of temporal synchronisation within a network of neur
oscillators. It is demonstrated that the oscillator network is able
group acoustic components which have the same fundamental
quency or have a common onset time.

2. THE MODEL

The proposed model consists of four stages; peripheral audit
processing, periodicity analysis (correlogram), oscillator netwo
and attentional searchlight. For further details see [3].

2.1. Auditory Periphery

The frequency selective properties of the basilar membrane
modelled by a bank of gammatone filters [13], where each filt
simulates the frequency response of a particular point along
cochlear partition. The studies described here employ a bank of
filters, with centre frequencies distributed between 100 Hz and
kHz on an ERB-rate scale [7]. The output of each filter is con
verted to a probabilistic representation of auditory nerve firin
activity by the Meddis [10] model of inner hair cell transduction

2.2. Correlogram

Recently, theories of pitch perception have been proposed wh
integrate periodicity information across resolved and unresolv
harmonic regions. Models of this type are able to account f
many psychophysical pitch phenomena, and are also able
explain the finding that a difference in fundamental frequenc
between two complex sounds can assist their perceptual segr
tion [11]. Here, we adopt one of this class of pitch models know
as thecorrelogram, in which periodicities in the temporal fine
structure of auditory nerve firing patterns are identified by a
autocorrelation analysis at each characteristic frequency [4]. F
an auditory filter channelf, the running autocorrelationaf at timet
and lagτ is given by

(1)

where

(2)

Here,dt is the sample period (0.0625ms),h(T) is a rectangular
window of width 20 ms andrf is the probability of firing activity
in the auditory nerve, derived from the Meddis hair cell mode
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Equation 1 was computed for values ofτ between 0 ms and 20 ms
in steps ofdt.

2.3. Oscillator Network

In our scheme, it is assumed that source segregation is achieved by
selective attention to the neural activity in groups of auditory filter
channels. Grouping is encoded by the pattern of temporal synchro-
nisation in a fully connected network of sine circle maps [1]. Each
circle map models the phase dynamics of a neural oscillator,
which signals the grouping between its corresponding auditory fil-
ter channel and other channels. For clarity, we refer to units in the
network as ‘neurons’, although each is intended to reflect the
activity of a collection of neurons rather than a single cell. The
sine circle map is given by

(3)

where the noise termη represents equally distributed random
numbers in the interval [0,10-9]. The new phaseθi(t+1) of the neu-
ron for channeli is computed by applying the circle map on the
old phaseθi(t) and on an input valueυi, weighted by a coupling
strengthκ:

(4)

The inputυi is related to the phases of the other neurons in the net-
work, weighted by a coupling matrixW:

(5)

With parameter valuesκ=1.5,Ω=0.618 andk=5.0, neurons in the
network exhibit chaotic oscillations. When the coupling strength
Wij between two neuronsi andj is high, the cells show an identical
phase response. Similarly, neurons that are weakly coupled give
rise to uncorrelated time series.

Learning in the network is determined by periodicity detection in
the correlogram. Initially, all neurons are strongly coupled (Wij=1,
for all i≠j). At intervals of 1 ms, a correlogram is computed and
the autocorrelation functions for all channels are summed. The lag
at which the largest peak occurs in this summary function,τp, is
taken to be the pitch period of the sound source (see also [4]):

(6)

The channels of the correlogram are sampled at this lag, giving an
estimateaf(t,τp) of the strength to which each channelf is respond-
ing to the pitch periodτp at timet. These pitch strengths are used
to modify the coupling between neurons in the oscillator network,
according to the following learning rule:

(7)

Here,γ determines the learning rate andλ determines the rate at

whichWij  returns to its resting level. The functionΦ(x), given by

(8)

confines the coupling strength to the range [0,1]. Parameter val
were set by inspection (γ=5×10-6, λ=0.95).

The learning rule given in equation 7 embodies a principle that
closely related to the Gestalt heuristic of ‘common fate’. This ter
describes the tendency to group sensory elements which chang
the same way at the same time [2]. Similarly, our learning ru
ensures that the coupling is reduced between channels that are
responding to the same fundamental frequency at the same tim

2.4. Attentional Searchlight

The last stage of the model is an attentional mechanism, inspi
by Crick’s [6] proposal for an attentional ‘searchlight’. The
searchlight takes the form of rapid bursts of firing in a subset
thalamic cells. When the thalamic neurons fire in synchrony wi
the oscillations of a neuronal group, that group becomes the att
tional ‘foreground’ and other groups are relegated to the ‘bac
ground’.

Currently, the attentional searchlight is not explicitly implemente
in our computer model. Instead, we consider the temporal corre
tion between the activity of pairs of neurons in the oscillator ne
work. The correlation between two time seriesX(t) andY(t) is
given by

(9)

wherex(t)=X(t)-〈X〉 andy(t)=Y(t)-〈Y〉. If a pair of neurons in the
oscillator network are strongly coupled, the temporal correlatio
of their responsesC will be high. Hence, an attentional searchligh
that is synchronised to one of the cells will inevitably be synchr
nised to the other. Similarly,C will be low between neurons that
are weakly coupled; in this case, the searchlight may synchron
to one cell or the other, but not both simultaneously. In Bregman
[2] terms, high temporal correlation between neurons indicat
‘temporal coherence’ and low correlation indicates ‘streaming’.

3. SIMULATION RESULTS

In the remainder of this article, we present results from two sim
lations using the neural oscillator model (further results are al
reported in [3]). The first demonstrates that the oscillator netwo
is able to signal grouping by common fundamental frequency, a
the second demonstrates grouping by common onset. The para
ter values given in Section 2 were used for both simulations.

3.1. Grouping by Common Fundamental

The segregation of concurrent harmonic sounds can be likene
the sifting of partials through a ‘harmonic sieve’, which ha
‘holes’ at integer multiples of its fundamental frequency. Mooreet
al. [12] have quantified the width of the holes in the harmoni
sieve using a mistuning paradigm. They presented listeners wit
harmonic complex in which one component was mistuned, so t
its frequency was not an integer multiple of the fundamental. F
mistunings of up to 3% of the harmonic frequency, the parti
made a normal contribution to the pitch of the complex. Comp
nents mistuned by more than 3% began to be rejected by the h
monic sieve, and made a smaller contribution to the perceiv
pitch. Also, listeners heard partials that were mistuned by mo
than 2-3% as a separate sound source.
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Figure 1 illustrates the response of the model to a stimulus of 90
ms duration, which consisted of the first 12 harmonics of a 155 Hz
fundamental. The 4th partial of the stimulus was mistuned by a
percentage of its harmonic frequency. The correlation between
groups (grey circles) was computed by averaging the temporal
correlation C between the oscillator channel centred on the 4th
partial and the oscillator channels centred on the other harmonics
of the complex. Formally,

(10)

wherehi is the last 30 ms of the oscillator response for the periph-
eral channel centred on harmonici of the stimulus. Similarly, the
within-group correlation (open squares) is given by

(11)

It is clear from Figure 1 that the model is in qualitative agreement
with the psychophysical data; mistunings of up to 3% maintain a
high correlation between neurons in the oscillator network, indi-
cating that all harmonics of the complex have been allocated to the
same perceptual group. At mistunings of greater than 3% however,
there is a significant reduction in correlation between the oscillator
centred on the 4th partial and the remaining oscillators; this indi-
cates that the mistuned 4th harmonic has been perceptually segre-
gated from the other components of the complex.

The response of the oscillator network to a mistuned component
can be explained by consideration of the learning rule in equation
6. Recall that the amount of weight change between two neurons is
related to the difference in peak height in their corresponding cor-
relogram channels, measured at the pitch period of the source. For
a small mistuning, the channels of the correlogram near to the 4th
harmonic still exhibit a peak at the pitch period of the complex;
hence, the weights in the oscillator network remain unchanged.
For larger mistunings, however, this peak is reduced in height and
therefore the weights to the oscillators in the region of the 4th har-
monic are decreased. Consequently, the oscillators coding the 4th
partial desynchronise from the rest of the network, indicating per-

ceptual segregation. This desynchronisation is clearly illustrated
Figure 2, which shows the response of the oscillator network f
the 8% mistuning condition.

3.2. Grouping by Common Onset

The role of onset asynchrony in perceptual grouping has be
investigated by Ciocca and Darwin [5]. They asked listeners
judge the pitch of a harmonic complex in which one of th
resolved harmonics was mistuned. When the mistuned par
started 160 ms before the other components of the complex
made a reduced contribution to the perceived pitch. Its contrib
tion was abolished if it started more than 300 ms before. Further
was confirmed that this effect was due to perceptual groupi
rather than peripheral adaptation.

Figure 3 illustrates the response of the oscillator model to stim
similar to those used by Ciocca and Darwin. The stimuli consist
of the first 12 harmonics of a 155 Hz fundamental, and had a du
tion of 90 ms. The 4th partial started between 50ms and 300
before the other components. The figure shows the mean corr
tion M between oscillators in the same group and in differe
groups, using the metrics given in equations 10 and 11. It is cle
that the oscillators coding the 4th harmonic desynchronise fro
the other neurons in the network as the onset asynchrony
increased, indicating that the leading partial is perceptually seg
gated. This result follows directly from the learning rule given i
equation 6, which reduces the weight between neural oscillat
that do not exhibit a peak in their corresponding correlogra
channels at the same time.

4. DISCUSSION

A model of primitive auditory grouping has been described,
which groups are signalled by the pattern of temporal synchroni
tion in a network of neural oscillators. The model is in qualitativ
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Figure 1: Model simulation showing the effect of mistuning on
the mean correlation within and between groups in the neural
oscillator network. See the text for details.
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Figure 2: Neural oscillator response to a stimulus consisting
the first 12 partials of a 155 Hz fundamental, in which the 4th pa
tial (H4) has been mistuned by 8% of its harmonic frequency. T
stimulus was preceded by 20 ms of silence, during which all osc
lators remain synchronised. Following the onset of the harmon
complex (arrow), oscillators near to the mistuned component ra
idly desynchronise from the other neurons in the network.
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agreement with psychophysical findings on perceptual grouping
by onset asynchrony and common fundamental frequency. Related
studies have also shown that a neural oscillator model is able to
explain auditory grouping by frequency proximity and temporal
proximity [3].

A notable feature of the model is that the neural oscillators are
strongly coupled in their resting state (see Figure 2). Hence, the
default condition of organisation in the model is fusion; all compo-
nents of the stimulus are assumed to have originated from the
same acoustic source unless there is a reason to segregate them.
There is some empirical evidence to support this stance; for exam-
ple, a burst of white noise contains random cues for fusion and
segregation, but is perceived as a single coherent source [2].

The simulations reported in Section 2 illustrate an intriguing para-
dox. In the first example, a partial was excluded from an auditory
group when it was sufficiently mistuned; that is, pitch analysis
determined perceptual grouping. However, in the second case per-
ceptual grouping determined pitch; a partial of a harmonic com-
plex that started earlier than the other components was excluded
from the pitch percept. It appears, then, that pitch analysis can
both follow auditory grouping and contribute to it.

Figure 4 shows a modification of the neural oscillator model
which might explain this phenomenon. This scheme employs a
processing loop, in which coupling adjustments based on the cur-
rent pitch period are fed forward to the oscillator network, and

channel weights are fed back to the correlogram to influence t
computation of the next pitch period. The channel weights fe
back from the network would reflect the contribution of each cha
nel to the group in the attentional foreground, which in turn wou
be determined by the thalamic searchlight. Work on this model
currently in progress.
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Figure 3: Model simulation showing the effect of onset asyn-
chrony on the mean correlation within and between groups in the
neural oscillator network. See the text for details.

Correlation between
groups

Correlation within group

P
er

ip
he

ry

Correlogram

O
sc

ill
at

or
s

Summary

S
ea

rc
hl

ig
ht

Coupling
adjustment

Weights for ‘foreground’ group

Figure 4: A modified neural oscillator model.


	ABSTRACT
	1. INTRODUCTION
	2. THE MODEL
	2.1. Auditory Periphery
	2.2. Correlogram
	2.3. Oscillator Network
	2.4. Attentional Searchlight

	3. SIMULATION RESULTS
	3.1. Grouping by Common Fundamental
	3.2. Grouping by Common Onset

	4. DISCUSSION

	REFERENCES

