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Abstract

A neural model is described which uses oscillatory correlation to
segregate speech from interfering sound sources. The core of the model
is a two-layer neural oscillator network. A sound stream is represented
by a synchronized population of oscillators, and different streams are
represented by desynchronized oscillator populations. The model has
been evaluated using a corpus of speech mixed with interfering sounds,
and produces an improvement in signal-to-noise ratio for every mixture.

1 Introduction

Speech is seldom heard in isolation: usually, it is mixed with other environmental sou
Hence, the auditory system must parse the acoustic mixture reaching the ears in or
retrieve a description of each sound source, a process termedauditory scene analysis
(ASA) [2]. Conceptually, ASA may be regarded as a two-stage process. The first s
(which we term ‘segmentation’) decomposes the acoustic stimulus into a collectio
sensory elements. In the second stage (‘grouping’), elements that are likely to have a
from the same environmental event are combined into a perceptual structure cal
stream. Streams may be further interpreted by higher-level cognitive processes.

Recently, there has been a growing interest in the development of computational sy
that mimic ASA [4], [1], [5]. Such computational auditory scene analysis (CAS
systems are inspired by auditory function but do not model it closely; rather, they em
symbolic search or high-level inference engines. Although the performance of t
systems is encouraging, they are no match for the abilities of a human listener; also
tend to be complex and computationally intensive. In short, CASA currently remain
unsolved problem for real-time applications such as automatic speech recognition.

Given that human listeners can segregate concurrent sounds with apparent
computational systems that are more closely modelled on the neurobiological mecha
of hearing may offer a performance advantage over existing CASA systems.
observation− together with a desire to understand the neurobiological basis of ASA− has
led some investigators to propose neural network models of ASA. Most recently, Br
and Wang [3] have given an account of concurrent vowel separation based onoscillatory
correlation. In this framework, oscillators that represent a perceptual stream
synchronized (phase locked with zero phase lag), and are desynchronized from osci
that represent different streams [8]. Evidence for the oscillatory correlation theory co
from neurobiological studies which report synchronised oscillations in the auditory, vi
and olfactory cortices (see [10] for a review).
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In this paper, we propose a neural network model that uses oscillatory correlation a
underlying neural mechanism for ASA; streams are formed by synchronizing oscilla
in a two-dimensional time-frequency network. The model is evaluated on a task
involves the separation of two time-varying sounds. It therefore extends our prev
study [3], which only considered the segregation of vowel sounds with static spectra

2 Model description

The input to the model consists of a mixture of speech and an interfering sound so
sampled at a rate of 16 kHz with 16 bit resolution. This input signal is processed in
stages described below (see [10] for a detailed account).

2.1 Peripheral auditory processing

Peripheral auditory frequency selectivity is modelled using a bank of 128 gamma
filters with center frequencies equally distributed on the equivalent rectangular bandw
(ERB) scale between 80 Hz and 5 kHz [1]. Subsequently, the output of each filte
processed by a model of inner hair cell function. The output of the hair cell model
probabilistic representation of auditory nerve firing activity.

2.2 Mid-level auditory representations

Mechanisms similar to those underlying pitch perception can contribute to the perce
separation of sounds that have different fundamental frequencies (F0s) [3]. Accordi
the second stage of the model extracts periodicity information from the simulated aud
nerve firing patterns. This is achieved by computing a running autocorrelation of
auditory nerve activity in each channel, forming a representation known as acorrelogram
[1], [5]. At time stepj, the autocorrelationA(i,j,τ) for channeli with time lagτ is given by:

(1)

Here,r is the output of the hair cell model andw is a rectangular window of widthK time
steps. We useK = 320, corresponding to a window width of 20 ms. The autocorrelation
τ is computed inL steps of the sampling period between 0 andL-1; we useL = 201,
corresponding to a maximum delay of 12.5 ms. Equation (1) is computed forM time
frames, taken at 10 ms intervals (i.e., at intervals of 160 steps of the time indexj).

For periodic sounds, a characteristic ‘spine’ appears in the correlogram which is cen
on the lag corresponding to the stimulus period (Figure 1A). This pitch-related struc
can be emphasized by forming a ‘pooled’ correlograms(j,τ), which exhibits a prominent
peak at the delay corresponding to perceived pitch:

(2)

It is also possible to extract harmonics and formants from the correlogram, s
frequency channels that are excited by the same acoustic component share a s
pattern of periodicity. Bands of coherent periodicity can be identified by cross-correla
adjacent correlogram channels; regions of high correlation indicate a harmonic or for
[1]. The cross-correlationC(i,j) between channelsi andi+1 at time framej is defined as:

(3)

Here, is the autocorrelation function of (1) which has been normalized to h
zero mean and unity variance. A typical cross-correlation function is shown in Figure
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Â i j τ, ,( )



1B).
ally

o its

a
r

ur.
place

d
dent.

first
ee

its

r th
ross-
rk.
2.3 Neural oscillator network: overview

Segmentation and grouping take place within a two-layer oscillator network (Figure
The basic unit of the network is a single oscillator, which is defined as a reciproc
connected excitatory variablex and inhibitory variabley [7]. Since each layer of the
network takes the form of a time-frequency grid, we index each oscillator according t
frequency channel (i) and time frame (j):

(4a)

(4b)

Here, Iij represents external input to the oscillator,Sij denotes the coupling from other
oscillators in the network,ε, γ andβ are parameters, andρ is the amplitude of a Gaussian
noise term. If coupling and noise are ignored andIij is held constant, (4) defines a
relaxation oscillator with two time scales. Thex-nullcline, i.e. , is a cubic function
and they-nullcline is a sigmoid function. If , the two nullclines intersect only at
point along the middle branch of the cubic withβ chosen small. In this case, the oscillato
exhibits a stable limit cycle for small values ofε, and is referred to asenabled. The limit
cycle alternates betweensilent and active phases of near steady-state behavio
Compared to motion within each phase, the alternation between phases takes
rapidly, and is referred to asjumping. If , the two nullclines intersect at a stable fixe
point. In this case, no oscillation occurs. Hence, oscillations in (4) are stimulus-depen

2.4 Neural oscillator network: segment layer

In the first layer of the network,segmentsare formed− blocks of synchronised oscillators
that trace the evolution of an acoustic component through time and frequency. The
layer is a two-dimensional time-frequency grid of oscillators with a global inhibitor (s
Figure 1B). The coupling termSij  in (4a) is defined as

(5)

whereH is the Heaviside function (i.e.,H(x) = 1 for x ≥ 0, and zero otherwise),Wij,kl is the
connection weight from an oscillator (i,j) to an oscillator (k,l) andN(i,j) is the four nearest
neighbors of (i,j). The thresholdθx is chosen so that an oscillator has no influence on
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Figure 1: A. Correlogram of a mixture of speech and trill telephone, taken 450 ms aftee
start of the stimulus. The pooled correlogram is shown in the bottom panel, and the c
correlation function is shown on the right. B. Structure of the two-layer oscillator netwo
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neighbors unless it is in the active phase. The weight of neighboring connections alon
time axis is uniformly set to 1. The connection weight between an oscillator (i,j) and its
vertical neighbor (i+1,j) is set to 1 ifC(i,j) exceeds a thresholdθc; otherwise it is set to 0.
Wz is the weight of inhibition from the global inhibitorz, defined as

(6)

whereσ∞ = 1 if xij ≥ θz for at least one oscillator (i,j), andσ∞ = 0 otherwise. Henceθz is a
threshold. Ifσ∞ = 1, z→1.

Small segments may form which do not correspond to perceptually significant aco
components. In order to remove these noisy fragments, we introduce a lateral potenpij
for oscillator (i,j), defined as [11]:

(7)

Here,θp is a threshold.Np(i,j) is called the potential neighborhood of (i,j), which is chosen
to be (i,j-1) and (i,j+1). If both neighbors of (i,j) are active,pij approaches 1 on a fast time
scale; otherwise,pij  relaxes to 0 on a slow time scale determined byε.

The lateral potential plays its role by gating the input to an oscillator. More specifica
we replace (4a) with

(4a')

With pij initialized to 1, it follows thatpij will drop below the thresholdθ unless the
oscillator (i,j) receives excitation from its entire potential neighborhood. Given our cho
of neighborhood in (5), this implies that a segment must extend for at least t
consecutive time frames. Oscillators that are stimulated but cannot maintain a
potential are relegated to a discontiguous ‘background’ of noisy activity.

An oscillator (i,j) is stimulated if its corresponding input . Oscillators are stimulat
only if the energy in their corresponding correlogram channel exceeds a thresholdθa. It is
evident from (1) that the energy in a correlogram channeli at time j corresponds to
A(i,j,0); thus we setIij  = 0.2 ifA(i,j,0) >θa, andIij  = -5 otherwise.

Figure 2A shows the segmentation of a mixture of speech and trill telephone. The net
was simulated by the LEGION algorithm [8], producing 94 segments (each represent
a distinct gray level) plus the background (shown in black). For convenience we sho
segments together in Figure 2A, but each actually arises during a unique time interv
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Figure 2: A. Segments formed by the first layer of the network for a mixture of speech
trill telephone. B. Categorization of segments according to F0. Gray pixels represent th
P, and white pixels represent regions that do not agree with the F0.
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2.5 Neural oscillator network: grouping layer

The second layer is a two-dimensional network of laterally coupled oscillators with
global inhibition. Oscillators in this layer are stimulated if the corresponding oscillato
the first layer is stimulated and does not form part of the background. Initially,
oscillators have the same phase, implying that all segments from the first laye
allocated to the same stream. This initialization is consistent with psychophys
evidence suggesting that perceptual fusion is the default state of auditory organisatio
In the second layer, an oscillator has the same form as in (4), except thatxij is changed to:

(4a'')

Here,µ is a small positive parameter; this implies that an oscillator with a high late
potential gets a slightly higher external input. We chooseNp(i,j) andθp so that oscillators
which correspond to the longest segment from the first layer are the first to jump to
active phase. The longest segment is identified by using the mechanism described i

The coupling term in (4a'') consists of two types of coupling:

(8)

Here, represents mutual excitation between oscillators within each segment. W
if the active oscillators from the same segment occupy more than half of

length of the segment; otherwise if there is at least one active oscillator from
same segment.

The coupling term denotes vertical connections between oscillators correspondi
different frequency channels and different segments, but within the same time fram
each time frame, an F0 is estimated from the pooled correlogram (2) and this is us
classify frequency channels into two categories: a set of channels,P, that are consistent
with the F0, and a set of channels that are not (Figure 2B). Given the delayτm at which the
largest peak occurs in the pooled correlogram, for each channeli at time framej, i ∈ P if

(9)

SinceA(i,j,0) is the energy in correlogram channeli at timej, (9) amounts to classification
on the basis of an energy threshold. We useθd = 0.95. The delayτm can be found by using
a winner-take-all network, although for simplicity we currently apply a maximum selec
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Figure 3: A. Snapshot showing the activity of the second layer shortly after the staf
simulation. Active oscillators (white pixels) correspond to the speech stream. B. Ano
snapshot, taken shortly after A. Active oscillators correspond to the telephone stream
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The F0 classification process operates on channels, rather than segments. As a
channels within the same segment at a particular time frame may be allocated to diff
F0 categories. Since segments cannot be decomposed, we enforce a rule that all ch
of the same frame within each segment must belong to the same F0 category as that
majority of channels. After this conformational step, vertical connections are formed s
that, at each time frame, two oscillators of different segments have mutual excitatory
if the two corresponding channels belong to the same F0 category; otherwise they
mutual inhibitory links. is set to -0.5 if (i,j) receives an input from its inhibitory links;
similarly,  is set to 0.5 if (i,j) receives an input from its vertical excitatory links.

At present, our model has no mechanism for grouping segments that do not overl
time. Accordingly, we limit operation of the second layer to the time span of the long
segment. After forming lateral connections and trimming by the longest segment
network is numerically solved using the singular limit method [6].

Figure 3 shows the response of the second layer to the mixture of speech and
telephone. The figure shows two snapshots of the second layer, where a white
indicates an active oscillator and a black pixel indicates a silent oscillator. The netw
quickly forms two synchronous blocks, which desynchronize from each other. Figure
shows a snapshot taken when the oscillator block (stream) corresponding to the segr
speech is in the active phase; Figure 3B shows a subsequent snapshot when the os
block corresponding to the trill telephone is in the active phase. Hence, the activity in
layer of the network embodies the result of ASA; the components of an acoustic mix
have been separated using F0 information and represented by oscillatory correlation

2.6 Resynthesis

The last stage of the model is a resynthesis path. Phase-corrected output from
gammatone filterbank is divided into 20 ms sections, overlapping by 10 ms and windo
with a raised cosine. A weighting is then applied to each section, which is unity if
corresponding oscillator is in its active phase, and zero otherwise. The weighted
outputs are summed across all channels to yield a resynthesized waveform.
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Figure 4: A. SNR before (black bar) and after (grey bar) separation by the model. Re
are shown for voiced speech mixed with ten intrusions (N0 = 1 kHz tone; N1 = random
noise; N2 = noise bursts; N3 = ‘cocktail party’ noise; N4 = rock music; N5 = siren; N6
trill telephone; N7 = female speech; N8 = male speech; N9 = female speech)
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3 Evaluation

The model has been evaluated using 100 mixtures of speech and noise [4]. The mi
are obtained by adding the waveforms of ten voiced utterances to each of ten intr
sounds. Since separate speech and noise waveforms are available, a signal-to-nois
(SNR) can be computed for each mixture. Also, the SNR can be estimated after proce
by the model using separated speech and noise waveforms from the resynthesis pa

The SNR before and after separation by the model is shown in Figure 4A, averaged a
the ten utterances for each noise condition. Dramatic improvements in SNR are obt
when the interfering noise is narrowband (1 kHz tone and siren); such intrusions tend
represented as a single segment, which can be segregated very effectively from the s
source. Informal listening tests suggest that the intelligibility of the resynthesized sp
is good. Also, we have quantified the percentage of speech energy that is recovered
segregation process: typically, this is between 55% and 80% (Figure 4B).

4 Discussion

A significant feature of the model proposed here is that each stage has a neurobiol
foundation. The peripheral auditory model is based upon the gammatone filter, whi
derived from physiological measurement of auditory nerve impulse responses. Simi
our mid-level auditory representations are consistent with the physiology of the hi
auditory system [1]. Overall, the model is based on a framework− oscillatory correlation
− which is supported by recent neurophysiological findings.

The neural oscillator network performs ASA in a distributed manner; each oscill
behaves autonomously and in parallel with the other oscillators. Although there are is
regarding real-time implementation of the model that must be resolved [10], there is a
possibility that the oscillator network can be implemented in analog VLSI. This featur
very attractive, since the high speed and compact size of analog VLSI will be need
CASA is to provide an effective front-end for automatic speech recognition systems.
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