
COM2070 Notes: XP Outlined

stand

sasters
lients,
g is all
r sub-

that
eXtreme Programming, (XP), outlined

Summary: The 4 values and the 12 activities involved in XP are introduced.
Main reference is [Beck2000] and the web site <http://www.XProgramming.com>

1. The four values.

Before we get into the more detailed description of what XP is all about we need to under
the fundamental values that are its reason for existence and the reason for its success.

These four basic values of XP are:

Communication

Almost all the research that has been attempted into the great software engineering di
has concluded that breakdowns in communication between the developers and the c
amongst the clients and amongst the developers play a major role. In a sense, computin
about communication from human to computer to human and thus the very essence of ou
ject requires that we address this in a fundamental way.

XP tries to emphasise this factor by building a rich collection of procedures and activities
emphasise effective communication amongst ALL the stakeholders.

XP

courage

communication

feedback simplicity
Page 1 © W.M.L.Holcombe, 22/01/02

COM2070 Notes: XP Outlined

t one
ftware
y can
m to
e done
com-
. Many

has not
or pro-
comes
he
of the

, has
that
the

g our
g the

This is
en to
ess the
of the
gular

us or,
as been

could
y that

tween
tners).

lient
now
ds on
eded.

ing in
ll the

, with
sults
human
sibility
esses

enom-
Let us look at some of the most important areas where communication is vital. The firs
doesn’t involve the developers at all. Consider a company that wishes to have some so
developed to support its business activities. The first and most vital requirement is that the
decide what the principle objective of the software that they need is. This requires the
understand their business, its context, the strategy of the business and so on. For this to b
successfully there has to be good communication amongst the principle players in the
pany, the directors, managers, operators and possibly their clients and business backers
software disasters have been caused by failures at this level. Perhaps the company
thought through its business objectives properly, is the proposed software either needed
viding the most business value? It is often the case that the reason for the software be
obscured, perhaps the principlechampionin the company leaves of changes their role in t
company. Someone else might take over this responsibility and may either be unaware
motivation for the development or unsympathetic to it.

It is therefore vital that the company is clear about why it wants the software developed
analysed its operations sufficiently well to be able to justify it on business grounds and
there is a knowledgeable champion for the development who is well connected with ALL
stakeholders in the company. We will rely on the existence of these parameters durin
project. If something is wrong here then there is a strong chance that we will be buildin
wrong system, a waste of time for all concerned!

The next issue to address is the communication between the developers and the clients.
also, obviously vital. It is no good having one meeting at the start of the project and th
meet again when the supposed solution is delivered. This is bound to be a disaster unl
system is fairly trivial in nature. So much can change in the business between the start
project and the final commissioning of the solution that there has to be much more re
communication between these two parties.

The communication needs to provide several benefits. Firstly it has to provide a continuo
at least, frequent, renewal of the business requirements that are being addressed. As h
pointed out earlier, business needs can change rapidly and the purpose of the software
change with them. We must be aware of what is happening in the business and the wa
things are changing. This agility depends heavily on the communication mechanism be
clients and developers (also between developers and amongst the clients’ business par

As well as receiving this information from the clients the developers need to keep the c
informed of how they are doing. There is nothing more frustrating for a client than not to k
how things are getting on. They are paying for all this and there will be many other deman
their money. Regular feedback on progress, and demonstrable signs of progress are ne

The third aspect is the communication between the developers. This is often sadly lack
traditional development regimes. The communication process here involves keeping a
team involved in the planning of the project, keeping everyone up to date with progress
objectives and with the changing nature of the target. This is very difficult and usually re
in some of the team becoming disengaged and de-motivated if it is not addressed. The
side of the management of the team becomes crucial. Giving people respect and respon
provides a good basis for the development of rich and productive communication proc
within the team. Several XP practices contribute directly to this goal, as we shall see.

Feedback

Feedback is closely related to communication, they are two dimensions of the same ph
ena.
Page 2 © W.M.L.Holcombe, 22/01/02

COM2070 Notes: XP Outlined

ed and
iness
there
try to

rely on
nder-
is but
sting
s. It is
s to
Rapid

rapid
f

where

ers
this. It

often

nag-
some

docu-
o, you
n the
u are
sts for
ed but
de by

agers,
-

ration
d and

your
n you
f. At
sly
king
some

Suf-
want

rstand-
ften
ly too
We need to establish very rich mechanisms, as we saw above, to keep the client inform
involved in the project. This is to ensure that we are building the right system for the bus
and that we are making clear progress towards the joint objectives of all concerned. Thus
needs to be a mechanism for the client to see real results of the developers’ efforts and to
relate them to his/her business activities and needs. Traditional design-led approaches
producing large amounts of, often, incomprehensible, documents to do this. This is a po
ous and, ultimately, unrewarding endeavour. Regular increments of software can help th
can cause a distraction if the quality is poor and the client is sidetracked into doing the te
that should have been carried out by the developers and having to report faults and bug
no good delivering a prototype or an increment of the solution if it is unreliable and fail
meet the clients quality expectations. We must avoid this - previous approaches such as
Applications Development (RAD) failed in this respect because it was based on the
development of, possibly arbitrary, increments rather than on the rapid development ohigh
quality incrementsthat add business value to the client’s business.

Within the development team we need to ensure that everyone knows what is going on,
the project has got to and how their work fits into thebig picture. They also need to know how
good their work is and how good the work of all the others is. Building on the work of oth
when you have doubts about its quality is always a frustrating process. We need to avoid
is no good relying on the occasional review meeting. Although these are necessary and
productive they can also be a source of great problems.

Imagine the following scenario, typical of most traditional development projects. The ma
ers have allocated you some aspect of the development to code up. You might receive
textual descriptions or requirements of what is needed, you might receive some design
ments and it is your task to deliver some code by a deadline, perhaps a week or longer. S
go to your machine, which may well be separate from or shielded from others working o
project. You then spend the next few days trying to get your head round what it is that yo
supposed to do. After a while the manager gets fed up with your questions and reque
clarification - probably he/she doesn’t know the answer, maybe the client should be ask
everyone is too busy for that. So you struggle on and eventually manage to deliver the co
the deadline.

There is then a review or inspection meeting where your code is looked at by others, man
other programmers etc. (Aside. This would only happen in a so-called “well organised” com
pany, in many review is not a formal process and the only reviews take place during integ
testing when vast amounts of time and money are spent on the futile task of trying to fin
fix bugs!)

At the review they start criticising your code! You have sweated over this and have done
best yet they complain about many things. You misunderstood a requirement but whe
asked them about that very thing they either didn’t know or told you to sort it out yoursel
points where you showed initiative they criticise you for failing to follow some, previou
unknown, house convention or requirement. Criticising your detailed code may involve ta
your algorithms apart and suggesting that they would have used “better” ones. Perhaps
smart guy knows about a clever way to do what you did with half the effort. I could go on.
fice it to say that you are soon on the defensive and getting angry or demoralised. They
big changes and you would prefer to try to fix the problems by some judicioustweakingof the
code. In many situations the best solution is to start again having obtained a better unde
ing of what is wanted and what the “best” solution might be. However, human nature o
conspires against this and the tweaking approach is often adopted. Anyway, it is probab
late to do anything else with the deadline approaching!
Page 3 © W.M.L.Holcombe, 22/01/02

COM2070 Notes: XP Outlined

fusing
the

g that
ally

e new
siness
y intro-
fast
more

can we
eason
more
have

Much
are

rve to

l con-
s, at
ere

will
sec-

onfi-
yone

tices of

may
on of
ve the
We have to find a better way.

Simplicity

How many times have you used some software where there were complicated and con
features thatgot in the way? If this is the case of computing experts how much more is it
case for ordinary users?

Many projects get into trouble because the developers get sidelined into doing somethin
is technologically novel or “clever” when, in fact, the feature in question is just not re
needed. Clients can be seduced by such “enhancements” too and could agree to som
fancy feature being added when it makes no sense to do so, it adds nothing to their bu
capability. These extra features are a potential threat to the success of the system. The
duce unwanted complexity into the systems, especially if the delivery deadline is
approaching because the work on the new feature will, probably, be at the expense of
thorough testing of the software.

Einstein once said that “any solution should be as simple as possible but no simpler”.

We need to adopt the same attitude. Every aspect of the system should be considered,
really justify the time and effort in adding some supposed enhancement. However, if the r
for adding a layer of complexity is a good one, for example in order to make the software
robust by trying to trap inappropriate data input, then we have to do this. But we must
suitable tests to demonstrate that we have done it properly.

Courage

This means having the confidence to do things that might otherwise be considered risky.
of the philosophy of XP derives from abandoning some of the traditional ways of softw
development, ways that are widely taught and widely used in industry. It takes some ne
turn one’s back on all this expertise and experience.

Extreme programming, like an extreme sport, is software development without the norma
straints. Like climbing mountains without a rope, building software without a design seem
first sight, to be suicidal. Why it isn’t is the subject of much of Beck’s book [Beck2000]. Th
are constraints, and the practices of XP are meant to be followed.

Rather than being an informal and unregulated exercise it is in fact highly disciplined. You
have to learn how to enjoy the disciplines and to revel in the practices until they become
ond nature. It is only by making them automatic and natural that you will then gain the c
dence to attack any software project with the certainty that you will succeed as well as an
could.

We will see that there is a coherence and a rationale about the key set of values and prac
XP which will support us in our endeavours.

Confidence is one thing but over-confidence is another. You are not always right, others
have a valid point of view, too. As we have observed, learning how to argue from a positi
knowledge has to be moderated with the ability to compromise and agree when others ha
best argument.
Page 4 © W.M.L.Holcombe, 22/01/02

COM2070 Notes: XP Outlined

e they

 built -

ning

e (see
thods

a rapid

ork is
at the

s that
ay are
XP

intel-
also

pairs

ect of
better

at you
come
oject

f the
team
2. The twelve practices of XP.

2.1. Test first programming.

Before writing any code programmers build a set of tests. These tests are run – of cours
will fail as no code has been written! Why would one do this?

To get used to testing continuously –
at the end of a session, at the end of the day, whenever a small piece of code has been

ALL the test sets are run, this means -
all the relevant unit tests, testing classes and methods as they are coded;
all the functional tests, testing at the integration level and derived from the plan
game and subsequent discussions with the client.

The test sets are the most important resource and are continually enhanced.

The customer helps to supply tests. So functional tests are derived from the planning gam
below) using appropriate techniques. The quality of these tests is crucial and the me
described will provide test sets of outstanding power.

In a sense the test sets replace the specification and the design. They present us with
feedback mechanism that tells us if the code is “correct”.

If any tests fail the code must be fixed.

2.2. Pair programming.

Two people - One machine. This is a key feature. Organise the project so that when any w
being done it is done in pairs. One person using the keyboard and the other looking
screen.

All code must be written in this way. This is a process of continuous review and ensure
mistakes are made less frequently and the reasons for doing something in a particular w
open to discussion throughout. In fact, it not only applies to coding, all aspects of an
project should be like this, pairs of people working together, pooling their expertise and
lect and sharing information. Planning and discussing the project with the client should
involve as many of the team as possible.

The pairs swap around regularly, swapping roles within a pair and swapping between
gives a much greater understanding of what is being done in the project.

It is also an excellent mechanism for learning, your partner may be an expert in some asp
the project or the techniques being use. Perhaps they know the programming language
than you, you are bound to benefit from such a pairing. Perhaps you have some skills th
could transfer to others. Everyone should benefit, part of your motivation is thus to be
multi-skilled and to enhance your technical knowledge quite apart from completing the pr
successfully.

It does need to be built upon mutual respect amongst the team. You will get to know all o
team because different pairs will form up regularly and so communication throughout the
is enhanced.
Page 5 © W.M.L.Holcombe, 22/01/02

COM2070 Notes: XP Outlined

is that
very

lently
nt to

cli-
func-

t be
n be

then the
a very
in the
nment
issues

t team.

at the
tand
w, that
e, and

se. We
usly if
can be

uce the
lt.

ld soft-
sto-

these
ved in
he cli-
tation

rucial,
rmine
sional
olved
esting
evelop-
One interesting observation of the difference between XP projects and traditional ones
the XP teams are always talking to each other. When you walk into an XP site this is
noticeable, there is a lot of noise compared to the traditional lab where everyone is si
staring at their screens and very little talking is going on, what there is may not be releva
the project.

2.3. On-site customer.

This is recommended, if it is possible, since it will enrich the communication between the
ent and the development team. The customer/client has the authority to define the system
tionality, set priorities and to oversee the direction of the project. Of course, it migh
difficult to actually have the client in the development team at all times and it may not eve
desirable. If the key issue is to be able to respond to sudden changes in business need
client needs to be well connected back to the business in order to achieve this. I prefer
close relationship, regular visits and meetings both at the development team but also
business. Team members need to familiarise themselves with both the operating enviro
and a representative sample of the users of the system if they are to fully understand the
involved. This could be better than a permanent presence of the client in the developmen

One of my projects hit problems when we delivered part of the system only to discover th
role of theactual users did not correspond to what the client thought, he did not unders
some of his business’ processes! We had to go back and rebuild the system! We wish, no
we had spoken with more people in the business, in the presence of the client, of cours
thus been able to identify the business processes better.

It is an old adage that the client never knows what he or she wants and this is often the ca
have to question the clients and all the stakeholders in the business carefully and rigoro
we are to move towards identifying exactly what the business needs are and how they
supported.

Excellent communications between the development team and the business should red
volume and cost of documentation as well as ensuring that the right system is being bui

As with pair programming this aspect of XP encourages intense face-to-face dialogue.

2.4. The planning game.

The customer provides business stories and estimates are made about the time to bui
ware to implement the stories. We will see later how to approach the issue of identifying
ries. The essence is to identify small pieces of meaningful functionality and to describe
on a small card in such a way as to illustrate the sequences of interactions that are invol
the story process. From this information, which should be clear and understandable to t
ent as well as the developers, we construct test sets that will be applied to any implemen
that is supposed to implement that story.

Designing the test set for this purpose is a technically challenging task and one that is c
if we get it wrong then we are in trouble. Some authors suggest that the client should dete
the stories. This must be inadequate, if testing and test set generation is a key profes
activity then the task should be carried out by a professional. The client needs to be inv
and to identify many of the cases that have to be addressed but for the really rigorous t
that we need to use more sophisticated input is needed. This does not mean that the d
ment team cannot do it. They can and the techniques exist to address this.
Page 6 © W.M.L.Holcombe, 22/01/02

COM2070 Notes: XP Outlined

t are
etc.
been
gh the

which
e for-

and
will
m,
ge-

decides
of the

e busi-

rocess,
d into a
ing
e will

ality
mind
nd so

he core
to try
isting

help

been
n use,
e test

rs and
presen-
For each story we also need to identify any non-functional requirements, see [Gilb**], tha
stated or implied in the initial project description. This could relate to usability, efficiency,
and accurate metrics for measuring these and criteria for deciding when they have
achieved need to be agreed. This is a system level rather than a unit level exercise althou
way the units are built will influence the results of these tests.

Thus we have tests which are determining whether the functionality is correct and tests
will establish whether the non-functional requirements are also satisfied. Neither should b
gotten or skimped.

For each story we need to try to identify the cost of implementing it, how long will it take
how many people will it need. This is a difficult and error prone activity, only experience
help and it is thusreally important that you record your initial thoughts and compare the
later, with the reality. Only in this way will you develop the experience to make such jud
ments in the future.

Once a collection of meaningful stories have been agreed and costed then the customer
which stories provide the most business value. This has to be done with a clear measure
way these benefits can be measured and in consultation with the other key players in th
ness.

The programmers then implement the chosen stories.

2.5. System metaphor.

So, now we have some stories to build, how do we get started? The test set generation p
which focuses on the business processes in the stories and how these might be integrate
solution, will provide us with some clues. As part of this we are, maybe implicilty, build
models of the behaviour of parts of the system. This is an important reource and so w
already know quite a lot about the system level, functional requirements needed.

We now try to organise a collection of classes and methods that will achieve the function
described by the stories under development. As we will see, below, we need to keep in
that we will integrate these stories into stand alone and deliverable chunks of software a
our decisions here should reflect that.

The programmers define, perhaps, just a handful of classes and patterns that shape t
business problem and solution. This is like a primitive architecture. There are many ways
to do this, one may wish to utilise some existing patterns or libraries in order to reuse ex
resources.
If this is the case, however, it is important that

a) you fully understand what is being reused and
b) the reuse is natural and provides the sort of software components that really do
with the story.

We will make no assumptions about the quality of the reused components. If they have
produced through an XP approach then there will be full test sets available which you ca
extend and adapt for the new stories. If not then it is vital that they are fully tested and th
results properly analysed.

The system metaphor will be used as a means of communication between programme
customer. The notation chosen to represent it, therefore, has to be understandable and re
Page 7 © W.M.L.Holcombe, 22/01/02

COM2070 Notes: XP Outlined

ations
r.

menta-
e cli-
dback
prove-
might

ements
suit the

function-

histi-
which,
not

mple,
rs, here,
pond

s prior

ying to
n. Add-
es the
know
ething
tative of what you are trying to do.

This area is still a subject for research whether you are using XP or not and sensible not
and approaches are much sought after and rarely found. We will return to this issue late

2.6. Small, frequent release.

Release early and release often, that is the philosophy. Once we have produced an imple
tion of a story that provides some coherent business benefit we deliver and install it in th
ent’s business. This then provides the users opportunities to look at it and to provide fee
through the client to the development team. In many cases there are simple interface im
ments that can be made or it might lead to a greater awareness of how the whole system
support the business. This might cause some revisions of the project scope and requir
and is thus valuable to the development team. The release might be re-engineerined to
new understandings.

So, we do not regard these releases as prototypes, each release is real, each release is
ally useful, each release implements more stories each release is thoroughly tested.

2.7. Always use the SIMPLEST solution that adds business value.

As we have mentioned before, it is often tempting to develop something that is more sop
cated than is needed. We must avoid “bells and whistles”, that is unnecessary features
although they might be smart, technologically impressive or just plain fun to build, are
actually needed.

Always ask – does the customer really need this feature?

For the programmer this philosophy could be embodied in the practise of using, for exa
the minimum number of classes and methods to pass the tests. There are some dange
however, and they will be looked at under 2.11. Simplicity of code does not always corres
to simplicity of function, as we have observed.

2.8. Continuous integration.

Code is integrated into the system at least a few times every day. All unit tests must pas
to integration. All relevant functional tests must pass afterwards.

This is a major source of confidence that the team are getting somewhere. Rather than tr
integrate all the software (classes etc.) together at the end we integrate whenever we ca
ing trusted new stories to the current state of the system which is also well tested, requir
running of all the previous functional or system test cases. If everything passes then we
that we have built a system to supersede the previous version, it works and delivers som
useful to the client.

We can deliver it for further feedback and go on to the next set of stories.
Page 8 © W.M.L.Holcombe, 22/01/02

COM2070 Notes: XP Outlined

team’s

s that

project,
nd the

story

the test
all into
d and

nder-
tools
ything

t prac-
pro-

th all
mem-

to the
e way,
2.9. Coding standards.

These define rules for shared code ownership and for communication between different
code.

They should involve clearly defined and consistent class and method naming protocol
everyone is familiar with.

Everyone should use the same coding styles. These need to be agreed at the start of the
they will be dependent on the context of the project, the programming language used a
existing resources available.
Similar conventions should apply to the way that test sets are defined and to the user
cards. These need to have a set format and we discuss this later.

The benefits of clear conventions should be obvious. The source code, the stories and
sets are the major project descriptors, they replace the design. They therefore must not f
the same trap that much of the design notations suffer from. They must be well understoo
relevant for the job in hand.

It is worth exploring the use of XML and of suitable tags in these sources to enhance u
standing, to structure thinking and to allow for the use of suitable semantics extractions
and query mechanisms. Naturally these tags should be “neutralised” as comments in an
that has to be compiled or run.

2.10. Collective code ownership.

ALL the code belongs to ALL the programmers. Anyone can change anything.

This is a controversial aspect of XP and seems to go against common sense and curren
tice. But we are dealing with a situation here where there are much richer communication
cesses, where all the team members are fully involved, through pair programming, wi
aspects of the project. The common use of code standards will also mean that each team
ber should be able to understand any piece of code, what its purpose is and how it fits in
overall plan of things. If someone changes some code, perhaps to make it better in som

increment1 delivered to client

increment1
increment2

integrated and
delivered to client

increment1
increment2

increment3

integrated and
delivered to client

and so on. Everything has been tested fully.
Page 9 © W.M.L.Holcombe, 22/01/02

COM2070 Notes: XP Outlined

os-
sistent

tween
.

tain-
not be
ective.

ftware
it is
ach.

scales,
what
hat so

oun-

back,
move
out by
nic are

now a
then this should be apparent and if others disagree then they can change it back.

Because the code does notbelongto any one person there is no-one to get defensive and p
sessive about it. This should lead to a more relaxed, but at the same time, a more con
awareness of what is happening in the project.

Since there are house rules for writing and documenting code and for communicating be
teams we should be able to benefit from this inclusive approach to the project resources

2.11. Refactoring.

Refactoring is defined to be therestructuring code without changing its functionality.

Its use is mainly to SIMPLIFY code – make it more understandable, and thus more main
able. This is vital. We have no design, although we have observed that the design may
accurate or that useful for maintenance something has to take its place and be more eff
This is the stories, the test sets and the code.

Refactoring, see [Fowler2000], could involve a number of improvements:

Moving (extracting) methods used in several classes to a separate class;
Extracting superclasses;
Renaming classes, methods, functions;
Simplifying conditional expressions;
Reorganising data
and so on.

Some basic support for refactoring is supplied byRefactoring browsers.

2.12. Forty hour week.

Tired programmers write poor code and make more mistakes. Since much of the so
industry is reliant on the heroics of individuals working round the clock to meet deadlines
hardly surprising that mistakes are made. We need to get away from this treadmill appro

The way that XP is organised helps to eliminate stress caused through unrealistic time
lack of knowledge and understanding about what is going on, worries about the quality of
is being built, the timeliness and usefulness of the solution for the client and the concern t
much time has been spent on design that the final coding and integration will present a m
tain to climb, with testing left to the end and neglected.

So, XP is supposed to minimise this stress with its emphasis on communication, feed
quality, incremental builds and the rest. It should minimise the need for overtime and re
the panic. In comparative experiments I have undertaken with real projects being carried
competing teams, XP and traditional, it was quite clear that the stress levels and the pa
much reduced using XP.

Because much more progress can be seen to be being made working for fewer hours is
feasible strategy.

References.
Page 10 © W.M.L.Holcombe, 22/01/02

COM2070 Notes: XP Outlined

-

[Beck2000] K. Beck,Extreme programming explained - embrace change, Addison Wesley,
2000.

[Fowler2000], M. Fowler,Refactoring - Improving the design of existing code, Addison Wesley,
2000.

[Gilb1988] T. Gilb,Principles of software engineering management, edited by Susannah Fin
zi,Wokingham : Addison-Wesley, 1988 .

<http://www.XProgramming.com>
Page 11 © W.M.L.Holcombe, 22/01/02

