

COM2070 – Software Hut

Dr Gerald Luettgen
Dr Marian Gheorghe

Topic: Software Testing & Test Management

Idea: Focus mainly on general principles & widely accepted
procedures

Testing is an activity within

Validation & Verification

(Boehm1981)

Validation: Are we building the right product?

Software product must be traceable to customer
requirements

Verification: Are we building the product right?

 Software product correctly implements specified functions

In addition to testing, V&V encompasses

- formal reviews (documentation, processes, documentation)
- quality audits
- feasibility studies
- algorithmic analysis
- …

TESTING has two directions:

DEFECT TESTING

A test is successful if it reveals an error/fault

VALIDATION TESTING

A test is successful if the system performs the given
test set correctly; used to validate a design or
implementation against a specification – ex X-
machine testing

This lecture will introduce/review

TESTING TECHNIQUES

TESTING STRATEGIES (TEST MANAGEMENT)

OO TESTING

DEFECT TESTING

Demonstrate the presence, not the absence, of faults

TEST CASE:

- Specification of the input to the test
- Specification of the expected output
- Statement of what is being tested

TEST DATA:

- Input data according to test specification
- Generated manually or automatically

TESTING POLICIES

- Exhaustive testing is impractical
- All program statement should be tested
- All system functions accessed through menus should be

tested
- All functions relying on user input must be tested with

both correct and incorrect input

BLACK-BOX TESTING

- Tests are derived from the program (components)
specifications

- System behaviour can only be determined by studying its
inputs and related outputs; the system is a black box

Challenge:

- Selecting inputs that have a high probability of revealing

an error

Approaches:

- Apply domain knowledge
- Employ a systematic technique called equivalence

partitioning

Input test data

Output test data

Ie

Oe

Inputs causing
anomalous
behaviour

System
Outputs which
reveal the
presence of
defects

1. Equivalence partitioning (with Boundary value analysis)

- Partition input data into a number of different classes (one
might partition integer data into negative integers, 0,
positive integers)

- The partition should be done such that all input data from
the same equivalence class yields an ‘equivalent’
behaviour and output

CHOOSING TEST CASES

- An arbitrary value from each class – in general a ‘mi-
point’

- Might be enforced with boundary values (when an ordered
set of data is an equivalence class then the first, middle
and last elements are usually considered)

CLASS’ IDENTIFICATION

- Program specification
- User documentation
- Experience …

Example: Program accepts 4 to 10 inputs which are 5-digit
integers greater than or equal to 10,000

Less than 4 Between 4 and 10 More than 10

Le

3 4 7 10 11

Number of input values
ss than 10000 Between 10000 and 99999 More than 99999

 9999 10000 50000 99999 100000
Input values

Example of derivation of test cases: search routine

public static void search (int key, int [] t,
 Result r)

Where r has two components: found of type boolean and ind
of type integer; when key is found in t then r.found is
becoming true and r.ind returns its position in t, otherwise
r.found is false and r.ind is -1

Pre-condition
- the sequence has at least one element

Post-condition
- the element is found and referenced by r.ind (r.found is

true and t[r.ind] contains key) or
- the element is not in the sequence (r.found is false and

doesn’t exist k such that t[k] == key, then r.ind=-1)

3 partition criteria:

- inputs where the key element is/is not a member of the
sequence

- inputs where the sequence has length 1/greater than 1
- inputs where the key element is included in the

front/middle/back of the sequence

{one might also derive test cases where the sequence is
ascending/descending ordered or unordered}

Equivalence partitions for search routine

TEST CASES:

Array Element Input Output

(found, ind)
Single value In sequence t, key true, 0
Single value Not in sequence t, key false, ??
More than 1
value

First element in
sequence

t, key true, 0

More than 1
value

Last element in
sequence

t, key true, last

More than 1
value

Middle element
in sequence

t, key true,
position

More than 1
value

Not in sequence t, key false, ??

TEST DATA SET:

Input sequence (t) Input value (key) Expected output
17 17 true, 0
17 0 false, -1
17, 29, 21, 6, 10 17 true, 0
17, 29, 21, 6, 10 10 true, 4
17, 29, 21, 6, 10 21 true, 2
17, 29, 21, 6, 10 0 false, -1

2. Graph-based Testing Method

Identify (objects’) states and links (transitions) between them
associated to some actions; useful when testing object based
systems or HCI

STATES and LINKS identification

- States: (relevant) attribute values, page content, states of
previous models (state models, DFD models)

- Links: operations, links between pages, transitions of
previous models (state models, DFD models)

TEST CASES:

- individual links with the associated states
- paths through the state machine

A

B B

C C

back

Example: In a Library system data to identify a staff member
(name and library number – 9 digits -) are introduced and
validated; valid data are stored in a data base; if invalid data are
introduced an error message is displayed and data are
reintroduced

Paths like:

((get data)* check (store|di

with the associated states/v

Input state Link
1: correct name &
lib no

get d

1: correct name &
lib no

check

2: correct name &
lib no

store

3: correct name &
lib no

retur

1: incorrect name,
and/or lib no

get d

1: incorrect name,
and/or lib no

check

2: incorrect name,
and/or lib no

displ

1: staff
data

get data

check

2: (in)
correct
data
splay error) return)*

alues may tested

(s) Output s
ata; get data 1: correc

lib no
 2: correc

lib no
 3: correc

lib no
n 1: no da

ata; get data 1: incorr
and/or li

 2: incorr
and/or li

ay error 4: error

display error
3: data
in
DB
store
return
4: error
msg
return
tate
t name &

t name &

t name &

ta

ect name,
b no
ect name,
b no
message

TEST DATA SET

Input state Link(s) Output state
1:Marian Gheorghe,
001178514

get data; get data 1:Marian Gheorghe,
001178514

1:Marian Gheorghe,
001178514

check 2:Marian Gheorghe,
001178514

2:Marian Gheorghe,
001178514

store 3:Marian Gheorghe,
001178514

3:Marian Gheorghe,
001178514

return 1: no data

1:Marian Gheorghe,
1178514

get data; get data 1:Marian Gheorghe,
1178514

1:Marian Gheorghe,
1178514

check 2:Marian Gheorghe,
1178514

2:Marian Gheorghe,
1178514

display error 4: error ‘wrong lib
no’

4: error ‘wrong lib
no’

return 1: no data

1: ,001178514 get data; get data 1: ,001178514
 …
2: ,001178514 display error 4: error ‘missing

name’
4: error ‘missing
name’

return 1: no data

1:, 1178514 get data; get data 1:, 1178514
 …
2:, 1178514 display error 4: error ‘missing

name & wrong lib
no’

Comments. A more elaborated table may be produced by
distinguishing between input/output on the one hand and
memory values used and yielded on the other hand (X-machine)

WHITE-BOX TESTING

- The tests are derived from knowledge of the software’s
structure and implementation

- This testing method is suitable for small program units

- Analyse the code to find out how many test cases are

needed to execute all program statements at least once

Example: binary search

Class BinSearch{
/* This takes an array of ordered objects and a
key and returns an object r with 2 components
ind – the value of the array index
found – a Boolean indicating whether or not the
key is in the array
r.ind = -1 when the element is not found */

public static void search (int key, int [] t,
 Result r)
{
 int bottom = 0;
 int top = t.length – 1;
 int mid;
 r.found = false;
 r.ind = -1;
 while (bottom <= top)
 {
 mid = (top + bottom)/2;
 if (t[mid] == key)
 {
 r.ind = mid;
 r.found = true;
 return;
 } // end if
 else
 {
 if (t[mid] < key)
 bottom = mid + 1;
 else
 top = mid – 1;
 } // end else
 } //end while
} //end search

} //end BinSearch

Path testing

Exercise every independent path through a component (this
implies that every statement is executed at least once; in
particular all conditional statements are tested for both true and
false cases). These are derived from the flow graph (every
statement type has a node type associated with)

Flow graph of search method of class BinSearch is

Independent paths Data to exercise

- 1 2 3 8 9 empty sequence
- 1 2 3 4 6 7 2 8 9 t = {5,6}, key = 4
- 1 2 3 4 5 7 2 8 9 t = {5}, key = 6

 1

 2

 8 4

 5 9 6

 7

 3

bottom > top

while(bottom <= top)

if(t[mid]==key)

if(t[mid]<key)
T F

T F

These are simple paths; 1 (2 3 4 5 7)n 2 8 9 may be used
TEST MANAGEMENT

Conflict of interest

- software development is constructive
- software testing is destructive

Conclusion. Software developers should not be the same people
testing the software they produced, although they know their
programs best

Important principles

- have an independent test group working together with the
software developers

- make the software developers responsible for testing
individual program units/modules

- think about and conduct testing from the very early stages
of the product cycle on; testing is associated with all SE
process stages:
o unit testing during codification
o integration testing associated with (architectural)

design
o validation testing associated with requirements
o system testing associated with the system as a whole

TESTING DOCUMENTATION

BE SYSTEMATIC AND RECORD WHAT YOU DO

Sample test script

Test Objective: …

Test No Input Expected Actual Analysis Action

Part of the test strategy: assign priorities

- mandatory: must test this aspect
- desirable: should test this aspect
- beneficial: may test this aspect

This leads to the following question: when is testing complete?

NEVER! … Each time the software is run, it is tested

You end it up when

- finish up applying an employed testing strategy
- run out of time/money

UNIT TESTING

Focuses on smallest units of software design

Consider a single module and test it wrt

- interface: data flow in and out of the program unit
- integrity of local data structures
- boundary conditions
- independent path exercising each statement at least once
- error handling paths

Employ WHITE-BOX TESTING here

Tests at this level are usually conducted by the unit
designer/programmer

Potential erroneous computations:

- incorrect/lack of initialisation
- wrongly assumed operators‘ precedence order
- improper use of Boolean operators
- improper or non-existent loop termination
- improper modified loop variables
- comparison of different data types, …

Potential errors in error handling

- exception-condition processing is incorrect
- error description is unintelligible or vague

Many errors are revealed when testing boundaries

- when the first/last element of an array is processed
- when an array has one element or nothing at all
- when a loop body is evaluated for the last time
- exercise data structure, control flow just below/above

maxima/minima

UNIT TESTING procedures

To test a unit, one first needs to build a stand-alone program
around it by providing

- drives which accept data, pass data to the unit under
testing and print out relevant results

- stubs which replace subordinate modules, partially
implement some functionalities

Problem: writing drivers and stubs induces overhead and
sometimes this is too expensive and testing is postponed until
more units are available

 driver

module to be tested

stub1 stubn

interface
local data structures
boundary conditions
independent paths
error handling paths

test
cases

RESULTS

INTEGRATION TESTING

Modules which work individually correct, might not behave
correctly when composed/integrated with other modules due to

- error regarding interfacing
- combination of sub-functions does not yield desired

function
- individual arithmetic imprecisions add up to an

unacceptable amount
- global data structures …

INTEGRATION TESTING

- construct the program structure & at the same time
conduct tests to uncover interfacing errors

IMPORTANT

- employ a combination of black-box (units) and white-box
testing (paths between units)

- integrate incrementally (big bang = big surprise!)

TOP-DOWN INTEGRATION

Means

- moving downward through the control hierarchy,
beginning with the main module, which also acts as a test
driver

- proceeding either in a
o depth first fashion or
o breadth first fashion

- employing stubs which are successively replaced by real
components

 M1

 M2 M3 M4

 M7 M6 M5

 M8 depth

breadth

BOTTOM-UP INTEGRATION

Means

- starting construction and testing with atomic units; moving
upwards

- combining several units into clusters before testing; this
keeps the necessary drivers simple

- replacing drivers successively by real modules/clusters
upwards

 clusters

D1 D2 D3

Ma Mb

TOP-DOWN VS BOTTOM-UP INTEGRATION

Major disadvantages

Top-Down

– need for stubs

Bottom-Up

– program as an entity doesn’t exist until the last module
is added

Major advantages

Top-Down

- tests major control functions early

Bottom-Up

- lack of stubs

Combined Top-Down/Bottom-Up approach

- Top-Down for upper levels
- Bottom-Up for lower levels

Identify ‘critical’ modules and integrate them early

REGRESSION TESTING

- Because software continuously changes during integration
then re-execute subsets of tests that have already been
conducted to ensure that changes have not propagated
unintended side-effects

How to decide on subsets of test cases?

Include

- representative sample of tests that exercise all software
functions

- additional tests regarding software functions which are
likely to be affected by the change

- tests regarding the software components that have been
changed

VALIDATION TESTING

Validation testing succeeds when

Software functions are implemented in a manner that can
be reasonably expected by the customer; as agreed in the
requirements document – refer mostly to use cases

Validation testing employs black-box testing

Test

- functional requirements
- behavioural characteristics
- performance requirements
- documentation
- …

Large software projects, where products are developed for
multiple customers, often employ alpha & beta testing

- with customers as testers
- alpha testing at software developers’ site
- beta testing at customers’ site

SYSTEM TESTING

The main purpose is to fully exercise the computer-based
system in the client’s environment

Recovery testing

Provoke different kinds of failure and check the
consequences

Security testing

Provoke similar effects as ‘intruders’ can cause

Stress testing

Confront programs with abnormal situations regarding
quantity, frequency, volume (of data/transactions)

Performance testing

Test performance issues: speed, use of resources, time
spent (to perform some tasks)

OBJECT-ORIENTED TESTING STRATEGIES

In the classical approach testing computer software starts with
‘testing in the small’ – unit testing – and works outward toward
‘testing in the large’ - progresses toward integration testing,
ending with validation and system testing -.

Testing in OO context addresses UNIT and INTEGRATION
testing

UNIT testing in OO context

The smallest testable unit is the class; a method cann’t be tested
in isolation – a method defined in a superclass may be used by
its subclasses in different contexts

INTEGRATION testing

The classical top-down and bottom-up approaches are not
appropriate as OO doesn’t provide a hierarchical structure of
the software product

Alternative solutions are:

- thread-based testing: integrates those classes responsible to
respond to the same inputs/events

- use-based testing: first integrate those independent classes
(do not use other classes or only some server classes); at
the next are integrated those using independent classes

- cluster testing: a set of classes collaborating are integrated
in one step

Three types of faults are encountered during integration testing:

- unexpected results
- wrong operation used
- incorrect invocation

CONCLUSIONS

- Testing is a ‘destructive’ activity, time- and resource-
consuming, but must be done

- Testing can be done systematically employing some

strategies

- Testing requires some creativity in identifying the most
likely used components and setting adequate tests for them

- Testing never ends; there will always be some unintended

bugs in the code; make sure they are inconsequential

	COM2070 – Software Hut
	Dr Marian Gheorghe

	Topic: Software Testing & Test Management
	Validation & Verification
	
	DEFECT TESTING
	A test is successful if it reveals an error/fault
	VALIDATION TESTING
	TESTING TECHNIQUES

	DEFECT TESTING
	Demonstrate the presence, not the absence, of faults
	Specification of the input to the test
	Input data according to test specification
	Exhaustive testing is impractical
	Apply domain knowledge
	Program specification

	Pre-condition
	Post-condition
	Class BinSearch{
	
	
	Path testing
	UNIT TESTING
	UNIT TESTING procedures
	Bottom-Up
	Provoke similar effects as ‘intruders’ can cause

